高三网 > 高考 > 高考助考 > 关于高考数学答题技巧和方法

关于高考数学答题技巧和方法

高老师 分享 时间:

想要在考试中取得优异的成绩,就要掌握解题技巧。那么关于高考数学答题技巧和方法有哪些呢?以下是小编准备的关于高考数学答题技巧和方法,欢迎参考。

高考数学答题技巧

1、三角变换与三角函数的性质问题

解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2、解三角形问题

解题方法:

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3、数列的通项、求和问题

解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

4、离散型随机变量的均值与方差

解题思路:

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

答题步骤:

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

高考数学答题方法

1.高考数学数列问题

数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

2.高考数学立体几何问题

立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

3.高考数学导数问题

导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

4.高考数学概率问题

概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

高考数学必考七个题型

1、函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

2、平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

3、数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

4、不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

5、概率和统计

这部分和我们的生活联系比较大,属应用题。

6、空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

7、解析几何

高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

高考数学大题6大题型

高考数学大题题型一:三角函数、向量、解三角形

三角函数画图、性质、三角恒等变换、和与差公式。

向量的工具性(平面向量背景)。

正弦定理、余弦定理、解三角形背景。

综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。

重视三角恒等变换下的性质探究,重视考查图形图像的变换。

高考数学大题题型二:概率与统计

古典概型。茎叶图。直方图。回归方程。

(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能性事件、互斥事件、独立事件的概率计算公式,难度不算很大。

高考数学大题题型三:立体几何

平行。垂直。角。利用三视图计算面积与体积。既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。

高考数学大题题型四:数列

等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。错位相减法、裂项求和法。应用题。

高考数学大题题型五:圆锥曲线(椭圆)与圆

椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。

圆的方程,圆与直线的位置关系。

注重椭圆与圆、椭圆与抛物线等的组合题。

高考数学大题题型三:函数、导数与不等式

函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。

函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最值(极值),求曲线的切线方程,对参数取值范围、根的分布的探求,对参数的分类讨论以及代数推理等等。

利用基本不等式、对勾函数性质。