高三网 > 高考 > 高考助考 > 高考数学大题必考题型及答题技巧

高考数学大题必考题型及答题技巧

高老师 分享 时间:

高中数学就是先做简单题,再做综合题,那么关于高考数学大题必考题型及答题技巧有哪些呢?以下是小编整理的一些高考数学大题必考题型及答题技巧,仅供参考。

高考数学大题必考题型

1、函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

2、平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

3、数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

4、不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

5、概率和统计

这部分和我们的生活联系比较大,属应用题。

6、空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

7、解析几何

高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

高考数学大题6大题型是什么

高考数学大题题型一:三角函数、向量、解三角形

三角函数画图、性质、三角恒等变换、和与差公式。

向量的工具性(平面向量背景)。

正弦定理、余弦定理、解三角形背景。

综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。

重视三角恒等变换下的性质探究,重视考查图形图像的变换。

高考数学大题题型二:概率与统计

古典概型。茎叶图。直方图。回归方程。

(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能性事件、互斥事件、独立事件的概率计算公式,难度不算很大。

高考数学大题题型三:立体几何

平行。垂直。角。利用三视图计算面积与体积。既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。

高考数学大题题型四:数列

等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。错位相减法、裂项求和法。应用题。

高考数学大题题型五:圆锥曲线(椭圆)与圆

椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。

圆的方程,圆与直线的位置关系。

注重椭圆与圆、椭圆与抛物线等的组合题。

高考数学大题题型三:函数、导数与不等式

函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。

函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最值(极值),求曲线的切线方程,对参数取值范围、根的分布的探求,对参数的分类讨论以及代数推理等等。

利用基本不等式、对勾函数性质。

高考数学解题技巧

1.妙用数学思想

高考数学客观题有60分,它的特点是只要答案,不要过程,有人戏称为不讲理的题,正因为不要写出道理,就要讲究解题策略,而不必每题都当解答题去解。考生可以动用三大法宝:排除法、特殊值法、数形结合法。

如已知|a|1,|b|1,|c|1,则ab+bc+ca与-1的大小关系是______。

用特殊值法,取a=b=c=0,立得ab+bc+ca-1。若把它当成解答题来解,有些学生可能不会做,或者即使会做也要浪费好多时间。

2.力求最简解法

有的高考数学问题有简捷的解法,但有些学生往往拿到题目后不认真思考,随便想到一种方法就解,结果要么是繁得做不下去,要么解题过程中出现运算错误,即使勉强解出结果,却用了大量时间。

因此,高考考生拿到数学题目不要急于落笔,先找出比较简单的方法再解题,既能准确算对,又能节省时间,否则会陷于欲进不能、欲罢不忍的尴尬状态。由繁变简,关键在于不墨守成规。改变一下思维方式,可以使问题的解答变得异常简单。

高中数学答题模板整理

1、高考数学选择填空题答题方法

高考数学选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

2、高中数学解答题答题技巧与模板

1)三角变换与三角函数的性质问题

一、解题路线图

①不同角化同角

②降幂扩角

③化f(x)=Asin(ωx+φ)+h

④结合性质求解。

二、构建答题模板

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

2)高中数学解三角形问题

一、解题路线图

①化简变形;②用余弦定理转化为边的关系;③变形证明。

①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

二、构建答题模板

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

3)数列的通项、求和问题

一、数学解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

二、构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

4)利用空间向量求角问题

一、解题路线图

①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

二、构建答题模板

①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

5)圆锥曲线中的范围问题

一、解题路线图

①设方程。

②解系数。

③得结论。

二、构建答题模板

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

6)解析几何中的探索性问题

高考数学试卷题型分布情况

以全国卷为例,共三个题型。选择题一共有60分,12道题目;填空题共20分,有4个小题;第三道大题是解答题,前三个比较简单,共36分,后几道难一些,共34分,其中22-24题为选考题,选做一道即可。

高考数学会涉及到很多的知识点,所以复习时要面面俱到,否则就可能在高考时遇到不会的题目。选择题和填空题常考的考点主要有集合部分、函数部分、三角形与三角函数、平面向量与复数部分、数量章节、不等式章节、平面与立体几何部分、统计部分、概率部分等。

而解答题主要涉及到的知识有选考部分、正态分布、离散型分布、统计、圆锥曲线、椭圆、曲线与方程、直线与方程、立体几何部分、数列求和、解三角形、导数部分等。当然,以上只是一个大致的高考数学考点分析,每年数学考试内容都会有所调整,但是考试内容都万变不离其宗。