提高高考数学学习效率的方法
推荐文章
提高高考数学学习效率的方法
高考数学
1、SQ3R法
罗宾生(Robinson)提出的SQ3R法是提高学习效率的一种好方法。SQ3R是由Survey,Question,Read,Recite,Review几个单词的第一个字母缩写成的。
(1)概览(Survey):即概要性地阅读。当你要读一本书或一段文章时,你必须借助标题和副标题知道大概内容,还要抓住开头,结尾及段落问承上启下的句子。这样一来,你就有了一个比较明确的目标有利于进一步学习。
(2)问题(Question):即在学习时,要把注意力集中到人物、事件、时间、地点、原因等基本问题上,同时找一找自己有哪些不懂的地力。如果是学习课文,预习中的提问可增加你在课堂上的参与意识。要是研究一个课题时你能带着问题去读有关资料,就能更有的放矢。
(3)阅读(Read):阅读的目的是要找到问题的答案,不必咬文嚼字,应注重对意思的理解。有些书应采用快速阅读,这有助于提高你的知识量,有些书则应采用精该法,反复琢磨其中的含义。
(4)背诵(Recite):读了几段后,合上书想想究竟前面讲了些什么,可以用自己的语言做一些简单的读书摘要,从中找出关键的表达词语,采用精炼的语言把思想归纳成几点,这样做既有助于记忆、背诵或复述,又有助于提高表达能力,且使思维更有逻辑性。这种尝试背诵的方法比单纯重复多遍的阅读方法效果更好。
(5)复习(Review):在阅读了全部内容之后,回顾一遍是必要的。复习时,可参考笔记摘要,分清段落间每一层次的不同含义。复习的最主要作用是避免遗忘。一般来说,及时复习是最有效的,随着时间的推移,复习可逐渐减少,但经常性地复习有助于使学习效果更巩固,所谓“拳不离手,曲不离口”,即是此意。
2、自我塑造法
上面介绍的SQ3R法是一种学习方法,仅可解决因方法缺乏而引起的学习上的问题。对于因其他原因而引起的学习问题,则还需综合考虑运用其他方法,自我塑造法即是一种综合法。
(1)选择一个目标。经过对学习效率低的原因分析,你已经找出自己的症结所在,但对改变它你不可性急,而应该首先选择其中较为可行的一项进行重点突破。我们常观到某些学生在接受长辈一顿训斥后,立即制定一个宏大的学习计划,其实这种计划十有八、九是执行不下去的。我在学英语时,有一天忽然下决心要从阅读原版小说入手,结果我借了一世界名著《马丁.伊登》,并且向朋友宣布,我要花一个月时间啃下此书。结果呢,我连第一页都没能读完,因为里面的生词查不胜查。后来我选择了比较适中的学习目标,先从世界名著简写本入手,结果越读兴趣越浓,不再视英语为畏途了。
(2)实行新的学习程序,如果你的症结是行为拖拉,为克服这个缺点你就应该给自己订一个规则,每天不完成预订的任务不睡觉。如果你的赞美是注意力不集中,那么你应分析不集中的原因。在寝室读书不集中,则应责令自己到教室里去读。如果读半小时后不集中,则应略为休息一下,或改变一下学习内容。如果原因是对读书不感兴趣,则首先努力去读自己有兴趣的书或改变单调枯燥的读书方法,将读书与工作、娱乐、陶冶性情结合起来,或给自己的学习以一定的奖励。坚持一段时间后,随着良好习惯的形成,学习兴趣就会逐渐浓厚。
高考数学必考计算公式
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体
R-环体半径D-环体直径r-环体截面半径d-环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D-桶腹直径d-桶底直径h-桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
高考数学基础知识点
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高考数学导数知识点总结
一、综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高考数学重点知识点
1.求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
2.求函数的极值:
设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。
可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:
(4)检查f(x)的符号并由表格判断极值。
3.求函数的值与最小值:
如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。
上一篇:成人高考语文实用技巧
下一篇:数学高中怎么样提高成绩