高三网 > 高考 > 高考助考 > 高中数学等差数列求和公式

高中数学等差数列求和公式

高老师 分享 时间:

高中数学等差数列求和公式有哪些

等差数列公式an=a1+(n-1)d

前n项和公式为:Sn=na1+n(n-1)d/2

若公差d=1时:Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

第n项的值an=首项+(项数-1)×公差

前n项的和Sn=首项+末项×项数(项数-1)公差/2

公差d=(an-a1)÷(n-1)

项数=(末项-首项)÷公差+1

数列为奇数项时,前n项的和=中间项×项数

数列为偶数项,求首尾项相加,用它的和除以2

等差中项公式2an+1=an+an+2其中{an}是等差数列

以上n均为正整数。

高考数学拿满分的方法有哪些

第一、拿到卷子先明确15分的位置,也就是每块的最后几题,在题号上划个杠,告诉自己,不求完美,大不了不做了,安心做那135分。

第二、分配时间,把一半小时分给剩下的135分,把时间写在卷子上。

第三、打草稿,打草稿是非常重要的一环,草稿是过程,答题纸是结果,过程错误,结果一定错误,过程正确,结果错不到哪里去。打草稿,就要像写作业一样工工整整的写,从左上角开始,标好题号,一行行地写,写完一题,打个框框起来,和其它题的草稿进行区分,把重要步骤的结果用圆圈圈起来。刚开始这么做,你会发现浪费了很多时间,平时课堂测验时间不足,成绩下滑,但不要灰心,你收获的将是非常良好的做题习惯,速度会越来越快,你会越来越自信,坚持一个学期两个学期,你会有质的改变。

第四、题中绝不复查,更不要做一题检查一题。选择题、填空题做完,如果分配的时间还有大量的没有用完,才可以检查,而你刚才做的工整的草稿会使你的检查非常的迅速而高效。

第五、最后如果你还剩下半个多小时,开始对付最后15分。

高考怎样才能考高分

高考中数学要考高分,需要具备以下条件:

课本基本知识和所有例题掌握异常扎实,公式定理及其推导证明烂熟于胸。因为,高考中不仅考查基础知识,有时直接出课本原题,或者公式定理的推导证明。

高中数学知识掌握全面,平面几何,代数,立体几何,解析几何都没有任何知识缺陷或漏洞。

掌握各种类型题的解法和技巧,并能融会贯通,灵活迁移和联系运用。

高考数学答题技巧

1、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

2、求椭圆或是双曲线的离心率,建立关于 a 、 b 、 c 之间的关系等式即可;

3、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

4、数列的题目与和有关,优选和通公式,优选作差的方法注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前 n 项和公式,体会方程的思想;

5、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距创造直角三角形解题

6、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃重视几何意义的应用,注意点是否在曲线上。

等差数列推论

(1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。

(3)若m,n,p,q∈N__,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)__a(n),S(2n+1)=(2n+1)__a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)__k-S(n-1)__k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2__a(p)。

证明:p(m)+p(n)=b(0)+b(1)__m+b(0)+b(1)__n=2__b(0)+b(1)__(m+n);p(p)+p(q)=b(0)+b(1)__p+b(0)+b(1)__q=2__b(0)+b(1)__(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。

(4)其他推论:

①和=(首项+末项)×项数÷2;

②项数=(末项-首项)÷公差+1;

③首项=2x和÷项数-末项或末项-公差×(项数-1);

④末项=2x和÷项数-首项;

⑤末项=首项+(项数-1)×公差;

⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。