高三网 > 高考 > 高考助考 > 高考数学备考学习方法总结

高考数学备考学习方法总结

高老师 分享 时间:

一、温故法

学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

二、操作法

对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。

三、类比法

这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

四、喻理法

为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念

五、置疑法

这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。

六、创境法

如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。

高考数学复习方法

集中时间和精力。

有的学生在学习时,从一门课程跳到另一门课程,这样就分散和浪费了他们的时间和精力,最后,每件事都接触了一下,但都没有完成。

利用潜意识。

当大脑处于休息睡眠状态时,潜意识却开始了它的工作。如果在醒来时你想将这些想法或解决问题的办法记住,就必须立刻把它们写下来,否则就会忘记。具有创造才能的都懂得这一点,所以他们的床头都有纸和笔。

另外一种利用潜意识的好办法是在__前把你感到困感的难题记在卡片上。当你的大脑进入睡眠状态时,你的潜意识会整夜地思考卡片上的内容。

消除困倦感。

学习时,如果规定的__时间还未到,你觉得困倦了,不要马上躺下小睡片刻,相反,你把课本拿起来,站起来在房间里走走,大声地将课文内容念起来。一会儿困倦感便会过去,你赢了这场战斗,而你晚上也会睡得更好。

高考数学复习注意事项

抓好基础

数学习题无非就是数学概念和思想的组合应用,了解数学的基本概念和定理是解答题目的前提。只有概念清楚了,并且了解了正确的解题方法,遇到题目时我们才能很快的做出来。面对一个新的习题时,我们也可以想到平时做题的方法,迅速解答新题目。弄清基本定理是很重要的,同学们一定要注意对基本定理牢牢的掌握,否则我们解题速度会很慢,逻辑也会混乱。

制定好计划和奋斗目标

复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

克服盲目做题而不注重归纳的现象

做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的组合,利用平时所学知识就能解决,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。

要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的`通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

积累一定的考试经验

本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

攻克三种题目的解法

数学试题分为选择题、填空题和解答题三种题型,选择题、填空题是基础,共76分,解答题是提高分数的关键,攻克这三种题目的解法,特别是选择题的解法,它解法灵活多样,如:直接法、代入法、特值法、排除法、数形结合法等。掌握多种这些解题方法,会使解答试题速度快而准确,同时为解答最后六道解答题赢得了更多的时间。

高考数学知识点记忆口诀

集合与函数

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

高考数学三角函数知识点

【公式一:】

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

【公式二:】

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

【公式三:】

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四:】

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五:】

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六:】

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)