高三网 > 高考 > 高考备考 > 三角函数二倍角公式有哪些 怎么计算

三角函数二倍角公式有哪些 怎么计算

高老师 分享 时间:

三角函数二倍角公式有哪些

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

sin2A=2sinA*cosA

三角函数怎么计算

sin(2A)=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA

cos(2A)=cos(A+A)=cosA*cosA-sinAsinA=cos²A-sin²A

tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/(1-tan²A)

实际上就是将2A写成A+A,然后利用两角和的三角函数公式展开即可。

三角函数相关公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

三倍角公式

sin3a=3sina-4(sina)^3

cos3a=4(cosa)^3-3cosa

tan3a=tana*tan(π/3+a)*tan(π/3-a)

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2