高三网 > 高考 > 高考备考 > 行列式和矩阵怎么转化 矩阵怎么变成行列式

行列式和矩阵怎么转化 矩阵怎么变成行列式

高老师 分享 时间:

矩阵怎么变成行列式

一般是将矩阵初等变换,化成三角阵,然后主对角线元素相乘,即可得到。

列三种变换称为矩阵的行初等变换:

(1)对调两行;

(2)以非零数k乘以某一行的所有元素;

(3)把某一行所有元素的k倍加到另一行对应元素上去。

将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。

求相似对角化的矩阵Q的具体步骤为:

求|λE-A|=0 (其中E为单位阵)的解,得λ1和λ2(不管是否重根),这就是Λ矩阵的对角元素。

依次把λ1和λ2带入方程(如果λ是重根只需代一次,就可求得两个基础解)[λE-A][x]=[0],求得两个解向量[x1]、[x2],从而矩阵Q的形式就是[x1 x2]。

接下来的求逆运算是一种基础运算,这里不再赘述。

行列式和矩阵的区别

矩阵是一个数表;行列式是一个n阶的方阵;矩阵不能从整体上被看成一个数;行列式最终可以算出来变成一个数;矩阵的行数和列数可以不同;行列式行数和列数必须相同。
行列式和矩阵的不同
1、运算结果上不同
矩阵是一个表格,行数和列数可以不一样;而行列式是一个数,且行数必须等于列数。只有方阵才可以定义它的行列式,而对于长方阵不能定义它的行列式。
两个矩阵相等是指对应元素都相等;两个行列式相等不要求对应元素都相等,甚至阶数也可以不一样,只要运算代数和的结果一样就行了。
2、运算方式不同
两矩阵相加是将各对应元素相加;两行列式相加,是将运算结果相加,在特殊情况下(比如有行或列相同),只能将一行(或列)的元素相加,其余元素照写。
3、性质不同
数乘矩阵是指该数乘以矩阵的每一个元素;而数乘行列式,只能用此数乘行列式的某一行或列,提公因数也如此。
4、变换后的结果不同
矩阵经初等变换,其秩不变;行列式经初等变换,其值可能改变:换法变换要变号,倍法变换差倍数;消法变换不改变。