高三网 > 高考 > 高考备考 > 高中数学竞赛讲座20讲

高中数学竞赛讲座20讲

高老师 分享 时间:

  竞赛讲座01

  -奇数和偶数

  整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数.

  关于奇数和偶数,有下面的性质:

  (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

  (2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;

  (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;

  (4)若a、b为整数,则a+b与a-b有相同的奇数偶;

  (5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.

  以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.

  1.代数式中的奇偶问题

  例1(第2届"华罗庚金杯"决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

  □+□=□, □-□=□,

  □×□=□ □÷□=□.

  解 因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.

  例2 (第1届"祖冲之杯"数学邀请赛)已知n是偶数,m是奇数,方程组

  是整数,那么

  (A)p、q都是偶数. (B)p、q都是奇数.

  (C)p是偶数,q是奇数 (D)p是奇数,q是偶数

  分析 由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)

下载地址:http://files.eduu.com/down.php?id=175518