反三角函数的导数
由 高老师 分享
时间:
推荐文章
反三角函数的导数是什么
反正弦函数的求导
(arcsinx)'=1/√(1-x^2)
反余弦函数的求导
(arccosx)'=-1/√(1-x^2)
反正切函数的求导
(arctanx)'=1/(1+x^2)
反余切函数的求导
(arccotx)'=-1/(1+x^2)
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x。
相应地。反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2
反三角函数的公式
反三角函数的和差公式与对应的三角函数的和差公式没有关系:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];
y=arccos(x),定义域[-1,1],值域[0,π];
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);
y=arccot(x),定义域(-∞,+∞),值域(0,π);
sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;
证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。
其他几个用类似方法可得。
cos(arccosx)=x,arccos(-x)=π-arccosx。
tan(arctanx)=x,arctan(-x)=-arctanx。
上一篇:情态动词would的用法归纳
下一篇:什么是复数