数学速算方法与技巧 怎么算最快
推荐文章
开普勒说:“数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的”。下面是数学速算技巧,欢迎各位阅读和借鉴。
数学十大速算技巧
一、充分利用五大定律
教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。
二、巧妙运用“首同末合十”
利用“首同末合十”的方法来训练。“首同末合十”法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用“首同末合十”的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54×56=3024,81×89=7209。
三、留心“左右两数合并法”
任意的两位数乘上99或任意的三位数乘上999的速算法叫做“左右两数合并法”。
1.任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62×99=6138,48×99=4752。
2.任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781×999=780219,396×999=395604。
四、利用分数与除法的关系来巧算
在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,
24÷18×36÷12=(24÷18)×(36÷12)=24/18×36/12=4。
五、利用扩大缩小的规律进行简算
有些除法计算题直接计算比较繁琐,而且容易算错,利用“扩缩规律”进行合理的变形可以找到简便的解决方法。比如,
7÷25=(7×4)÷(25×4)=28÷100=0.28,
24÷125=(24×8)÷(125×8)=192÷1000=0.192。
六、数字颠倒的两、三位数减法巧算
形如73与37、185与581等的数称为“数字颠倒”的两、三位数,巧算方法为:
1.数字颠倒的两位数减法,可用两位数字中的大数减去小数,再乘以9,积就是它们的差。如73-37=(7-3)×9=36,82-28=(8-2)×9=54。
2.数字颠倒的三位数减法,可用三位数中最大数减去最小数,再乘以9,乘积分两边,中间填上9,就是它们的差。比如,581-158=(8-1)×9=63,所以851-158=693。
七、用“添零加半”的方法巧算
一个数乘上15的速算方法叫做“添零加半”。比如,26×15将26后面添0得260,再加上260的一半130,即260+130=390,所以26×15=360。
八、利用拆和法进行巧算
有些计算题,乍看起来都与运算定律没有关系,但经过变形后,直接地应用运算定律来进行计算。
九、用“两边拉中间加”的方法速算
任何数同11相乘,只要把原数的个位移到积的个位的位置,最高位移到积的最高位的位置,中间的数分别是个位上的数加十位上的数的和就是十位,十位上的数加百位上的和就是百位……如果相加的数的和满十要向前一位数进1。比如,124×11=1364,568×11=6248。
十、用“十加个减法”速算
“十加个减法”就是任何两位数加上9的和,可以把这个两位数变成十位加1个位减1的数,即36+9=45,17+9=26。这种计算技巧适合低年级的小学生。
数学速算怎么算最快
估算法
估计,就是在精度要求不太高的情况下,粗略估计快速的方法。
它通常用于选项非常不同的情况,或者比较的数据非常不同的情况。评估的方式多种多样,更需要每个考生在实战中多加训练和掌握。
只有当选项或要比较的数字之间的差异很大时,才会进行评估,而差异的大小决定了“评估”所需的精度。
化同法
所谓“同化法”,是指“在比较两个分数时,在较大的小时内,将两个分数的分子或分母化为相同或相似,从而简化计算”的快速方法。
1.或分母变成完全一样的,所以只需要看一下分母或分子就可以了。
2. 当分子或分母降为相似时,可以直接判断某一分数的分母大,分子小,或某一分数的分母小,分子大。
直除法
“直除法”是在比较或计算复数时,用“直除法”求商的第一名,从而得到正确答案的一种快速方法。“直接划分”一般包括两种问题类型:
1. 当比较多个分数时,第一个最大/最小的数是等值数量级下的最大/小数。
2. 在计算分数时,可以通过计算不同选项的第一个位置来选择正确的答案。
“直接除法”一般按难度分为三个梯度:
1.直接能看到第一笔生意。
2.动手计算可以看到第一笔生意。
3.对于一些复杂的分数,需要计算分数的倒数的第一位来确定答案。