人教版高中数学正弦定理和余弦定理是什么
推荐文章
人教版高中数学正弦定理和余弦定理是什么
三角形的正弦定理和余弦定理是什么?还有哪些关于正弦和余弦的公式呢?下面,小编就为大家详细介绍,具体内容如下。
人教版高中数学正弦定理是什么
在一个三角形中,各边和它所对角的正弦的比相等.
即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)
这一定理对于任意三角形ABC,都有
a/sinA=b/sinB=c/sinC=2R
R为三角形外接圆半径
(1)已知三角形的两角与一边,解三角形
(2)已知三角形的两边和其中一边所对的角,解三角形
(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系
直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。
人教版高中数学正弦定理证明
步骤1
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到
a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度
因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
人教版高中数学正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若人教版高中数学对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
人教版高中数学余弦定理是什么
人教版高中数学余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.
对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质
(注:a*b、a*c就是a乘b、a乘c .a^2、b^2、c^2就是a的平方,b的平方,c的平方.)
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc