等比数列数学高中公式
推荐文章
等比数列数学高中公式
1、等比数列的通项公式是:An=A1__q^(n-1)
2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N__,则有:ap·aq=am·an,
等比中项:aq·ap=2arar则为ap,aq等比中项.
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.
性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;
②在等比数列中,依次每k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
高中数学解题方法
1、不等式、方程或函数的题型,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
高三数学复习实用的方法技巧
一、紧跟老师的节奏
基本上学校老师都已经安排好了学生的复习进程,包括第一轮总复习、第二轮总复习、冲刺复习等。每一个复习阶段都有其作用,比如第一轮复习注重基础,而最后冲刺阶段会进行一些押题。在复习时学生应该紧跟老师的节奏千万不能开小差,如果在基础复习时没有认真巩固之前的基础知识,那么之后复习需要用到这些知识的时候学生大脑一片空白,那复习也就失去了意义。
二、不要只顾难题
数学复习时进行习题练习,许多学生都会犯一个错误,那就是过于重视难题的练习而忽略基础题。要知道,在整个卷面分值来说基础题分值会占到70%,只顾复习难题而忽略基础题复习反而得不偿失。数学复习做习题练习时时应该将基础题型熟练掌握,先拿到这些基础分再考虑难题练习提高得分上限。
三、及时查漏补缺,弥补弱势项
数学试卷涉及的高中数学知识十分全面,但是学生不一定能够全面掌握这些数学知识,有不少学生都存在自己的弱势项,例如对函数拿手却对几何一窍不通。
不少同学在数学复习时遇到自己不会的题型会选择直接跳过,去练习那些自己擅长的题型,这样一位的逃避只会让自己的缺陷一直存在,对于存在弱势项的同学应该及时查漏补缺,不要存在侥幸心理,如果考试时刚好考到自己不会的那部分知识吃亏的只能是自己。
高中数学高效学习方法
明晰概念
高中数学中的概念是比较严谨的,各个定义间都有很强的逻辑联系,逐个理解后就应把概念记牢,高考的选择题会涉及这方面的内容,而某些解答题也会由于概念定义所限而由繁变简,掌握好数学概念之后,有利于基础打牢,要做到“明晰”,关键是要多查书,勤查书,不要一知半解。
刻苦练习
熟能生巧,对数学而言,也是如此。做题能提高对题型的熟识度,对技巧的熟识度,以及计算的准确度。而以上这些,会大大提高解题速度和准确率。而练习,也是要掌握方法的,习题太易,会使人生厌;习题太难,会让人胆怯。
调整状态
状态对于考生来讲,非常重要,数学考试中状态的差异,会带来成绩上巨大的波动。一般考前一段时间,老师会发很多练习以强化训练,而实际上,状态的调整因人而异。
有的人在数学训练之后对数学题目很厌烦,即使在考场上题目会做,往往草草收笔,过程简略,以致痛失步骤分;有的人训练得不够时,找不到做题的感觉,思维僵了,愣是解不出本在自己实力范围之内的题。
上一篇:高三化学必背知识点梳理
下一篇:高中化学易错知识点