高三网 > 高考 > 高考备考 > 高考数学知识点复习

高考数学知识点复习

高老师 分享 时间:

高考数学知识点复习

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2p__2=2pyx2=-2py

直棱柱侧面积S=c__h斜棱柱侧面积S=c'__h

正棱锥侧面积S=1/2c__h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi__r2

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c'__h

正棱锥侧面积 S=1/2c__h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi__r2

圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l

弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r

锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s__h 圆柱体 V=pi__r2h

数学知识点总结类辅导书选择攻略

1、尽量每一个科目只选一本教辅资料

2、不同阶段要选择适合自己的资料书

3、选择适合自己学习能力的

4、最关键的是如何利用资料书

高考数学答题注意事项

答题时应遵循“先易后难勿恋战”的原则。高考试题编制上一般都有先易后难的特点,这样比较符合心理学原理。刚进考场时,绝大部分考生都会感到情绪比较紧张,其感知、记忆、思维等心理过程都还未完全适应考场的紧张氛围,没有达到思维的最佳状态。

解答了几道比较容易的试题后,心情渐趋稳定,智力活动恢复常态,思维的灵活性和批判性大大提高,解题速度明显加快。而且,容易题做得越多,拿到的分数就越高,底气越足,自信心大大增强。

遭遇难题时,若屡试不爽,则干脆跳过去,千万不能纠缠不休。试想想,一道15分的题目,你花了半个多小时才解答出来,即使正确,而因为你已付出了全场考试1/4的时间,却只得到了总分的1/10的回报,实在是得不偿失。这时候,说不定你已急得如热锅上的蚂蚁,方寸大乱了。

高考数学考前冲刺技巧

1.整理公式

数学的内容更加灵活一些,不需要去背诵,只是会应用就可以了。首先可以把,这段时间学习到的公式整理一下,对于知识点有大概的了解。考试也是针对这些知识点进行出题考查的,了解了这些公式,才能更加快速、精确地答题。

2.复习错题

这个是数学科目复习的重点,拿出自己的错题本,可以把自己错的题再做一遍,重新巩固自己所学的知识点。并且,达到能够解这一类型的题目,避免在期中考试中再犯相同的错误。错题本重在理解。

3.多做练习

数学考查的还是同学们运用的能力。平常多刷题(可以重复刷自己会做错的题,直到做对为止),能够提高自己的做题速度,并且可以见到更多不同题型的考查方法,能够真正地提高自己的数学成绩。“题海战术”虽然古老,但是一直很好用!

数学常考题答题套路

恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。

圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。

求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。

求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。