高三网 > 高考 > 高考备考 > 高考物理复习知识点

高考物理复习知识点

高老师 分享 时间:

高考物理复习知识点

直线运动

物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

(2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;

机械运动

机械运动:一物体相对其它物体的位置变化。

1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

2.质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

6.速度是表示质点运动快慢的物理量

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7.加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

高考物理知识点考点归纳

1基本介绍

原子在化学反应中是最小的微粒无法再变化。原子是由原子核和核外电子构成。原子核由质子和中子构成,而质子和中子由三个夸克构成。电子的质量为9.1091x10-28-28">克,而质子和中子的质量分别是电子的1836倍和1839倍。

2数量关系

①质量数(A)=质子数(Z)+中子数(N)

②质子数=核电荷数=原子核外电子数=原子序数

注意:中子决定原子种类(同位素),质量数决定原子的近似相对原子质量,质子数(核电荷数)决定元素种类;原子最外层电子数决定整个原子显不显电性,也决定着主族元素的化学性质。

3原子模型

原子中除电子外还有什么东西?电子是怎么待在原子里的?原子中什么东西带正电荷?正电荷是如何分布的?带负电的电子和带正电的东西是怎样相互作用的?一大堆新问题摆在物理学家面前。根据科学实践和当时的实验观测结果,物理学家发挥了他们丰富的想象力,提出了各种不同的原子模型。

1901年法国物理学家佩兰(JeanBaptistePerrin,1870-1942)提出的结构模型,认为原子的中心是一些带正电的粒子,外围是一些绕转着的电子,电子绕转的周期对应于原子发射的光谱线频率,最外层的电子抛出就发射阴极射线。

高考物理重难点知识

一、起电方法的实验探究

1.物体有了吸引轻小物体的性质,就说物体带了电或有了电荷。

2.两种电荷

自然界中的电荷有2种,即正电荷和负电荷。如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用干燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。同种电荷相斥,异种电荷相吸。

相互吸引的一定是带异种电荷的物体吗?不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的“轻小物体”可能不带电。

3.起电的方法

使物体起电的方法有三种:摩擦起电、接触起电、感应起电

(1)摩擦起电:两种不同的物体原子核束缚电子的能力并不相同.两种物体相互摩擦时,束缚电子能力强的物体就会得到电子而带负电,束缚电子能力弱的物体会失去电子而带正电.(正负电荷的分开与转移)

(2)接触起电:带电物体由于缺少(或多余)电子,当带电体与不带电的物体接触时,就会使不带电的物体上失去电子(或得到电子),从而使不带电的物体由于缺少(或多余)电子而带正电(负电).(电荷从物体的一部分转移到另一部分)

(3)感应起电:当带电体靠近导体时,导体内的自由电子会向靠近或远离带电体的方向移动.(电荷从一个物体转移到另一个物体)

三种起电的方式不同,但实质都是发生电子的转移,使多余电子的物体(部分)带负电,使缺少电子的物体(部分)带正电.在电子转移的过程中,电荷的总量保持不变。

二、电荷守恒定律

1.电荷量:电荷的多少。在国际单位制中,它的单位是库仑,符号是C。

2.元电荷:电子和质子所带电荷的绝对值1.6×10-19C,所有带电体的电荷量等于e或e的整数倍。(元电荷就是带电荷量足够小的带电体吗?提示:不是,元电荷是一个抽象的概念,不是指的某一个带电体,它是指电荷的电荷量.另外任何带电体所带电荷量是1.6×10-19C的整数倍。)

3.比荷:粒子的电荷量与粒子质量的比值。

4.电荷守恒定律

表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。

表述2:在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。

例:有两个完全相同的带电绝缘金属小球A、B,分别带电荷量为QA=6.4×10-9C,QB=-3.2×10-9C,让两个绝缘小球接触,在接触过程中,电子如何转移并转移了多少?

【思路点拨】当两个完全相同的金属球接触后,根据对称性,两个球一定带等量的电荷量.若两个球原先带同种电荷,电荷量相加后均分;若两个球原先带异种电荷,则电荷先中和再均分.

高考物理易错点

01

1.大的物体不一定不能看成质点,小的物体不一定能看成质点。

2.平动的物体不一定能看成质点,转动的物体不一定不能看成质点。

3.参考系不一定是不动的,只是假定为不动的物体。

4.选择不同的参考系物体运动情况可能不同,但也可能相同。

5.在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。

6.忽视位移的矢量性,只强调大小而忽视方向。

7.物体做直线运动时,位移的大小不一定等于路程。

8.位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。

9.打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。

10.使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。

02

11.使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。

12.“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。

13.着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。

14.平均速度不是速度的平均。

15.平均速率不是平均速度的大小。

16.物体的速度大,其加速度不一定大。

17.物体的速度为零时,其加速度不一定为零。

18.物体的速度变化大,其加速度不一定大。

19.加速度的正、负仅表示方向,不表示大小。

20.物体的加速度为负值,物体不一定做减速运动。

03

21.物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。

22.物体的速度大小不变时,加速度不一定为零。

23.物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。

24.位移图象不是物体的运动轨迹。

25.解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。

26.图象是曲线的不表示物体做曲线运动。

27.由图象读取某个物理量时,应搞清这个量的大小和方向,特别要注意方向。

28.v-t图上两图线相交的点,不是相遇点,只是在这一时刻相等。

29.人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。

30.严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。

04

31.自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。

32.自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。

33.自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。

34.自由落体加速度通常可取9.8m/s2或10m/s2,但并不是不变的,它随纬度和海拔高度的变化而变化。

35.四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。

36.匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。

37.常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。

38.汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。

39.找准追及问题的临界条件,如位移关系、速度相等等。

40.用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。

05

41.产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。

42.某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。

43.压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。

44.胡克定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。

45.弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。

46.杆的弹力方向不一定沿杆。

47.摩擦力的作用效果既可充当阻力,也可充当动力。

48.滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。

49.各种摩擦力的方向与物体的运动方向无关。

50.静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。

06

51.静摩擦力与接触面和正压力有关,静摩擦力与压力无关。

52.画力的图示时要选择合适的标度。

53.实验中的两个细绳套不要太短。

54.检查弹簧测力计指针是否指零。

55.在同一次实验中,使橡皮条伸长时结点的位置一定要相同。

56.使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。

57.在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。

58.合力不一定大于分力,分力不一定小于合力。

59.三个力的合力值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。

60.两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。

07

61.一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。

62.物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的“冲力”的说法是错误的。

63.所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。

64.惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。

65.物体受力为零时速度不一定为零,速度为零时受力不一定为零。

66.牛顿第二定律F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时牛顿第二定律仍成立。

67.力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。

68.虽然由牛顿第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说牛顿第一定律是牛顿第二定律的特例,因为牛顿第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在牛顿第二定律中没有体现。

69.牛顿第二定律在力学中的应用广泛,但也不是“放之四海而皆准”,也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。

70.用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。

08

71.用正交分解法列方程时注意合力与分力不能重复计算。

72.注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。

73.超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。

74.判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。

75.有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。

76.两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。

77.国际单位制是单位制的一种,不要把单位制理解成国际单位制。

78.力的单位牛顿不是基本单位而是导出单位。

79.有些单位是常用单位而不是国际单位制单位,如:小时、斤等。

80.进行物理计算时常需要统一单位。

09

81.只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。

82.做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。

83.合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。

84.两个直线运动的合运动不一定是直线运动,两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动不一定是匀变速直线运动。

85.运动的合成与分解实际上就是描述运动的物理量的合成与分解,如速度、位移、加速度的合成与分解。

86.运动的分解并不是把运动分开,物体先参与一个运动,然后再参与另一运动,而只是为了研究的方便,从两个方向上分析物体的运动,分运动间具有等时性,不存在先后关系。

87.竖直上抛运动整体法分析时一定要注意方向问题,初速度方向向上,加速度方向向下,列方程时可以先假设一个正方向,再用正、负号表示各物理量的方向,尤其是位移的正、负,容易弄错,要特别注意。

88.竖直上抛运动的加速度不变,故其v-t图象的斜率不变,应为一条直线。

89.要注意题目描述中的隐蔽性,如“物体到达离抛出点5m处”,不一定是由抛出点上升5m,有可能在下降阶段到达该处,也有可能在抛出点下方5m处。

90.平抛运动公式中的时间t是从抛出点开始计时的,否则公式不成立。

10

91.求平抛运动物体某段时间内的速度变化时要注意应该用矢量相减的方法。用平抛竖落仪研究平抛运动时结果是自由落体运动的小球与同时平抛的小球同时落地,说明平抛运动的竖直分运动是自由落体运动,但此实验不能说明平抛运动的水平分运动是匀速直线运动。

92.并不是水平速度越大斜抛物体的射程就越远,射程的大小由初速度和抛射角度两因素共同决定。

93.斜抛运动点的物体速度不等于零,而等于其水平分速度。

94.斜抛运动轨迹具有对称性,但弹道曲线不具有对称性。

95.在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。

96.地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,各点做匀速圆周运动的半径不同,故各点线速度大小不相等。

97.同一轮子上各质点的角速度关系:由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同。各质点具有相同的ω、T和n。

98.在齿轮传动或皮带传动(皮带不打滑,摩擦传动中接触面不打滑)装置正常工作的情况下,皮带上各点及轮边缘各点的线速度大小相等。

99.匀速圆周运动的向心力就是物体的合外力,但变速圆周运动的向心力不一定是合外力。

100.当向心力有静摩擦力提供时,静摩擦力的大小和方向是由运动状态决定的。

11

101.绳只能产生拉力,杆对球既可以产生拉力又可以产生压力,所以求作用力时,应先利用临界条件判断杆对球施力的方向,或先假设力朝某一方向,然后根据所求结果进行判断。

102.公式F=mv2/r是牛顿第二定律在圆周运动中的应用,向心力就是做匀速圆周运动的物体所受的合外力。因此,牛顿定律及由牛顿定律导出的一些规律(如超重、失重等)在本章仍适用。

103.物体做离心运动是向心力不足造成的,并不是受到“离心力”的作用。

104.物体在完全失去向心力作用时,应沿当时物体所在处的切线方向运动,而不是沿半径方向运动。

105.要弄清需要的向心力F需和提供的向心力F供的关系,当F供F需时,物体做近(向)心运动。

106.任意两物体间都存在万有引力,但不是任意两物体间的万有引力都能用万有引力定律计算出来。

107.开普勒第三定律只对绕同一天体运转的星体适用,中心天体不同的不能用该定律,如各行星间可用该定律,火星和月球间不能用该定律。

108.在地球表面的物体,由于受地球自转的影响,重力是万有引力的一个分力,离开了地球表面,不受地球自转的影响时,重力就是万有引力。

109.万有引力定律适用于两质点之间引力的计算,如果是均匀的球体,也用两球心之间距离来计算。

110.掌握日常知识中地球的公转周期、月球的周期及地球同步卫星的周期等,在估算天体质量时,应作为隐含的已知条件加以挖掘应用。

12

111.进入绕地球运行轨道的宇宙飞船,在运行时不需要开发动机,因为宇宙飞船在轨道上运行时,万有引力全部用来提供做圆周运动的向心力。

112.在讨论有关卫星的题目时,关键要明确向心力、轨道半径、线速度、角速度和周期彼此影响,互相联系,只要其中一个量确定了,其它的量就不变了,只要其中一个量发生了变化,其它的量也会随之变化。

113.通常情况下,物体随地球自转做圆周运动所需向心力很小,故可在近似计算中取G=F,但若要考虑自转的影响,则不能近似处理。

114.地球同步卫星的轨道在赤道平面内,故只能“静止”于离赤道某高空的上空。

115.推动火箭前进的动力不是来自于大气,而是来自于火箭向后喷出的气体。

116.选取不同的参考系时,物体产生的位移可能不同,用公式求出的功就存在不确定性,因此在高中阶段计算功时一般以地面为参考系。

117.判断力对物体是否做功时,不仅要看力和位移,还要注意力与位移之间的夹角。

118.计算某个力的功时,要看看这个力是否始终作用在物体上,也就是说要注意力和位移的同时性。

119.作用力和反作用力虽等大反向,其总功却不一定为零,因为两个力做功之和不一定为零,有时两个力都做正功,有时都做负功,有时一个做正功一个做负功……

120.动能只有正值没有负值,最小值为零。

13

121.重力势能具有相对性,是因为高度具有相对性。

122.势能的正、负不表示方向,只表示大小。

123.比较两物体势能大小时必须选同一零势能面。

124.物体势能大小与零势能面选取有关,但两位置的势能之差与零势能面的选取无关。

125.重力做功与路径无关,只与初末位置有关。

126.求合力的总功时要注意各个功的正负。

127.功能变化一定是末动能减初动能。

128.列方程前一定要明确所研究的运动过程。

129.要严格按动能定理的一般表达形式列方程,即等号的一边是合力的总功,另一边是动能变化。

130.动能定理反映的是通过做功物体的动能与其他形式能的转化,不要理解成功与动能的转化。

14

131.机械能守恒定律的成立条件不是合外力为零,而是除重力和系统内弹力外,其他力做功为零。

132.机械能守恒定律是对系统而言的,单个物体无所谓机械能守恒,正常所说的某物体的机械能守恒只是一种习惯说法。

133.用机械能守恒定律列方程时初、末态的重力势能要选同一个零势能面。

134.虽然我们常用初、末态机械能相等列方程解题,但初、末态机械能相等与变化过程中机械能守恒含义不尽相同。整个过程中机械能一直保持不变,才叫机械能守恒,初、末态只是其中的两个时刻。

135.机械能守恒定律是能量转换与守恒定律的一个特例,当有除重力(或系统内弹力)以外的力做功时,机械能不再守恒,但系统的总能量仍守恒。

136.选纸带时,只要是正确操作打出的纸带都可用,不必非要选用前两个点间距为2㎜的。

137.在“验证机械能守恒定律”的实验中不需要测质量,故用不着天平。

138.在描述对物体的要求时应该说“质量大,体积小”,即较小的大密度的重物,不能只说成“密度大”。

139.用自由落体法验证机械能守恒定律中求瞬时速度要用纸带来求,而不能由v=√2gh来求。

140.能量守恒定律不需要限定条件,对每个过程都适用,但用来计算时须准确求出初态的总能量和末态的总能量。

15

141.功率表示的是做功快慢,而不是做功多少。

142.汽车的额定功率是其正常工作时的功率,实际功率可以小于或等于额定功率。

143.功率和效率是两个不同的概念,二者无必然的联系,功率大效率不一定高。

144.在计算汽车匀加速运动可维持的时间时,如果用汽车在水平路面上的速度除以加速度这种做法计算,汽车可以一直保持匀加速直至达到速度,是错误的。

145.常规能源仍是目前用的最多的能源,总的储量有限,因此要节约能量。

146.地球上大多数能源都可追溯到太阳能。

147.从对环境影响的角度来分类:能源可分为清洁能源和非清洁能源。

148.经典力学理论不是放之四海而皆准的真理,有其适用范围和局限性。

149.经典力学认为物体质量不仅恒定不变,且与物体的速度或能量无关。

150.“相对论时空观”指的是狭义相对论的时空观,爱因斯坦的广义相对论有另外的时空观。

高考物理的记忆口诀

一、运动的描述

1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,

再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.

竖直上抛知初速,上升心有数,飞行时间上下回,整个过程匀减速。

中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等aT平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

二、力

1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;

先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;

洛仑兹力安培力,二者实质是统一;相互垂直力,平行无力要切记。

3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;

两力合力小和大,两个力成q角夹,平行四边形定法;

合力大小随q变,只在最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。

4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;

状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;

假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;

正交分解选坐标,轴上矢量尽量多。

三、牛顿运动定律

1.F等ma,牛顿二定律,产生加速度,原因就是力。

合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。

2.N、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;

加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零

四、曲线运动、万有引力

1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,

mrw平方也需,供求平衡不心离。

3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。

卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,

距离越远越慢行,同步卫星速度定,定点赤道上空行。

五、机械能与能量

1.确定状态找,分析过程找力功,正功负功加一起,动能增量与它同。

2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

六、电场〖选修3--1〗

1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。

2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。

电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。

场能性质是电势,场线方向电势降。场力做功是qU,动能定理不能忘。

3.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。

七、恒定电流〖选修3-1〗

1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。

正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。

2.电阻定律三因素,温度不变才得出,控制变量来论述,rl比s等电阻。

电流做功UIt,电热I平方Rt。电功率,W比t,电压乘电流也是。

3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。

路端电压内压降,和就等电动势,除于总阻电流是。

八、磁场〖选修3-1〗

1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。

2.F比Il是场强,φ等BS磁通量,磁通密度φ比S,磁场强度之名异。

3.BIL安培力,相互垂直要注意。

4.洛仑兹力安培力,力往左甩别忘记。

九、电磁感应〖选修3-2〗

1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。

感应电动势大小,磁通变化率知晓。

2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。

3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,

自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,

全看磁通增或减,安培定则知i向。

十、交流电〖选修3-2〗

1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。

中性面计时是正弦,平行面计时是余弦。

2.NBSω是值,有效值用热量来计算。

3.变压器供交流用,恒定电流不能用。

理想变压器,初级UI值,次级UI值,相等是原理。

电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地算出。

远距输电用,升压降流送,否则耗损大,用户后降压。

十一、气态方程〖选修3-3〗

研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。

压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。

十二、热力学定律

1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;

对外做功和放热,内能减少皆负值。

2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。

十三、机械振动〖选修3--4〗

1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,

大小正比于位移,平衡位置u大极。

2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,

单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。

到质心摆长行,单摆具有等时性。

3.振动图像描方向,从底往顶是向上,从顶往底是下向;

振动图像描位移,顶点底点大位移,正负符号方向指。

十四、机械波〖选修3--4〗

1.左行左坡上,右行右坡上。峰点谷点无方向。

2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。

3.不同时刻的图像,Δt四分一或三,质点动向疑惑散,S等vt派用场。

十五、光学〖选修3-4〗

1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。

反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。

2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。

十六、物理光学

1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗

2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。〖选修3-5〗、

十七、动量〖选修3--5〗

1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。

2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。

十八、原子原子核〖选修3-5〗

1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;

光子能量hn,能级差值来计算。

2.原子核,能改变,αβ两衰变。

α粒是氦核,电子流是β射线。

γ光子不单有,伴随衰变而出现。

铀核分开是裂变,中子撞击是条件。

裂变可造原子弹,还可用它来发电。

轻核聚合是聚变,温度极高是条件。

变可以造氢弹,还是太阳能量源;

和平利用前景好,可惜至今未实现。