高三网 > 高考 > 高考备考 > 高中数学全部知识点

高中数学全部知识点

高老师 分享 时间:

在高中阶段掌握数学知识点非常重要,特别是在高三的时候,可以更好的考试,下面小编给大家整理了关于高中数学全部知识点的内容,欢迎阅读,内容仅供参考!

高中数学重点知识点全总结

1、三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

2、正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

3、怎样判断直线l与圆C的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

4、 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

不看后悔!清华名师揭秘学好高中数学的方法

培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?

(1) 欣赏数学的美感

比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……

举个例子,

通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。

(2)注意到数学在实际生活中的应用。

例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.

学好数学,是现代公民的基本素养之一啊.

(3)采用灵活的教学手段,与时俱进。

利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。

(4)适当看一些科普类的书籍和文章。

比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。

高中数学重点知识点整理

集合与简单逻辑

第一、遗忘空集是任何非空集合的真子集,因此对于集合B,就有B=A、φ≠B、B≠φ三种情况出现。在实际解题中,如果考生思维不够缜密,就有可能忽视第三种情况,导致结果出错。尤其是在解含有参数的集合问题时,要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊集合,考生因思维定式遗忘集合导致结果出错或不全面是常见的错误,一定要倍加当心。

第二、忽视集合元素的三性集合元素具有确定性、无序性、互异性的特点,在三性中,数互异性对答题的影响最大,尤其是带有字母参数的集合,实际上就隐含着对考生字母参数掌握程度的要求。在考场答题时,考生可先确定字母参数的范围,再一一具体解决。

第三、四种命题结构不明若原命题为“若 A则B”,则逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里将会出现两组等价的命题:“原命题和它的逆否命题等价”,“否命题与逆命题等价”。考生在遇到“由某一个命题写出其他形式命题”的题型时,要首先明确四种命题的结构以及它们之间的等价关系。

在否定一个命题时,要记住“全称命题的否定是特称命题,特称命题的否定是全称命题”的规律。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,不是“a ,b都是奇数”。

第四、充分必要条件颠倒两个条件A与B,若A=>B成立,则A是B的充分条件,B是A的必要条件;若B=>A成立,则A是B的必要条件,B是A的充分条件;若A<=>B,则AB互为充分必要条件。考生在解这类题时最容易出错的点就是颠倒了充分性与必要性,一定要根据充要条件的概念作出准确的判断。

第五、逻辑联结词理解不准确

在判断含逻辑联结词的命题时,考生很容易因理解不准确而出错。小编在这里给出一些常用的判断方法,希望同学们牢牢记住并加以运用。

p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);

p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);

┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

高中数学的学习要注意的事项

(一)学会听、读

我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢?

让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。

学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。

听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到简捷的方法?这个题有没有更直接的方法?

“学而不思则罔,思而不学则殆”,在听讲的过程中一定要有积极的思考和参预,这样才能达到高的学习效率。

阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。

比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题:

(1)是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数?

(2)正弦函数在什么情况下有反函数?若有,其反函数如何表示?

(3)正弦函数的图象与反正弦函数的图象是什么关系?

(4)反正弦函数有什么性质?

(5)如何求反正弦函数的值?

(二)学会思考

1、善于发现问题和提出问题

2、善于反思与反求

高中数学的快速的方法

1、平时多进行分析推理练习

因为数学的很多题目都是要靠分析和推理的,那不妨试试自己推理和分析,平时多练,这样不仅可以加深对公式的理解,还有助于题高自己的思维和分析推理能力,让自己对书本的知识更熟悉。

2、打好基础

不要以为只要自己学会推理和分析就很厉害了,老师所讲的内容也是尤为重要的,老师所讲的内容正是基础和常用的,如果连这些你都不能掌握好,那怎么去解题呢?所以听课的时候要特别认真,而且平时还要多做练习。

3、做题时画出重点和难点

在看题目的时候可以将一些重点的画出来,这样有助于解题时打开思路,否则一条很长的题目,你看一遍,忘了重点,又再看题目,这样会非常浪费时间,所以平时看题目的时候要养成画重点的习惯,特别是像一些平时自己经常会搞错或者看错的地方,要重点画出来。

4、做题前要先复习

做作业前记住要先复习,经过再一次的学习,你的思路会更清晰,那样在解题过程中你的思路会更清晰,做题时也会更有自信。

数学主要是培养学生的思考、分析和解决问题的能力,如果你可以做好以上几点,那相信你的数学也是可以提高的。

高中数学的解题技巧

一、熟悉化策略

所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

常用的途径有:

(一)、充分联想回忆基本知识和题型:

按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

(二)、全方位、多角度分析题意:

对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

(三)恰当构造辅助元素:

数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

二、简单化策略

所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

1、寻求中间环节,挖掘隐含条件:

在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

2、分类考察讨论:

在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

3、简单化已知条件:

有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

4、恰当分解结论:

有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

三、直观化策略:

所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

(一)、图表直观:

有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

(二)、图形直观:

有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

(三)、图象直观:

不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

四、特殊化策略

所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

五、一般化策略

所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

六、整体化策略

所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

七、间接化策略

所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。