微积分的作用及意义
推荐文章
什么是微积分呢?微积分的基础极大地促进了数学的发展,许多初等数学无法解决的问题都是通过微积分来解决的。这些问题往往是用刀刃来解决的,显示出非凡的计算能力,是数学中的一门基础学科。下面小编给大家整理了关于微积分的作用及意义的内容,欢迎阅读,内容仅供参考!
微积分有什么作用及意义
微积分的基础极大地促进了数学的发展,许多初等数学无法解决的问题都是通过微积分来解决的。这些问题往往是用刀刃来解决的,显示出非凡的计算能力,是数学中的一门基础学科,内容主要包括极限、微分学、积分学等。微分学包括导数的计算,是一套关于变化率的理论。
但微积分的重要性远大于此,许多自然现象都可以通过建立微分方程来描述,从纯数学的角度来看,用线性方法求解非线性问题的思想是前所未有的。随着微积分的确立,纯数学顺利地度过了第二次数学危机。
微积分是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
微积分的历史
十七世纪的许多著名的数学家、天文学家、物理学家都为解决几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
微积分的应用
例子一:火力发电厂的冷却塔的外形为什么要做成弯曲的,而不是像烟囱一样直上直下的?其中的原因就是冷却塔体积大,自重非常大,如果直上直下,那么最下面的建筑材料将承受巨大的压力,以至于承受不了(我们知道,地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。现在,把冷却塔的边缘做成双曲线的性状,正好能够让每一截面的压力相等,这样,冷却塔就能做的很大了。为什么会是双曲线,用于微积分理论5分钟之内就能够解决。
例子二:大家都使用电脑,计算机内部指令需要通过硬件表达,把信号转换为能够让我们感知的信息。前几天这里有个探讨算法的帖子,很有代表性。Windows系统带了一个计算器,可以进行一些简单的计算,比如算对数。计算机是计算是基于加法的,我们常说的多少亿次实际上就是指加法运算。那么,怎么把计算对数转换为加法呢?实际上就运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。
微积分和高数的区别
1、定义不一样:高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。微积分是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。因此微积分只是高数的一部分内容,并不等同于高数。
2、包括的内容不一样:高等数学主要内容包括极限、微积分、空间解析几何与线性代数、级数、常微分方程。微积分内容主要包括极限、微分学、积分学及其应用。
3、时间不一样:17世纪以后建立的数学学科基本上都是高等数学的内容。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽。所以微积分是要早于高等数学的。
高数好不好学
1、高数难,主要难在一种思维,它和高中数学相比来说有不小的差距,所以就会出现有些同学不适应,觉得难以理解的情况。 可能高数被各种段子恶搞,大家潜意识里就认为高数很难,很容易挂科。
2、再加上练习少,参加各种活动导致学习时间不足等因素,学起高数来就有点一知半解的感觉,总是觉得很抽象,题目一来一脸懵逼,无从下手。
3、其实,高数难的背后,是一批不愿花时间下去的同学,不预习,不复习,练习也不做,这样下去高数铁定难啊。 虽然大学的高等数学涉及面广了,知识点概念趋向抽象思维,但是你要是花高中时学习的一半精力下去,高数过掉绝对不是问题。
上一篇:高中复合函数求导公式
下一篇:高中数学知识点有哪些