高三网 > 高考 > 高考备考 > 关于复合函数求偏导

关于复合函数求偏导

高老师 分享 时间:

复合函数怎么求偏导

复合函数偏导求法可以运用链式求导法。

复合函数求导规则:

复合函数求导的前提,复合函数本身及所含函数都可导。法则1:设u=g(x),对f(u)求导得:f'(x)=f'(u)_g'(x);法则2:设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)_p'(u)_g'(x)。

偏导数求法:

当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

运用链式求导时,导出一个变量,剩余变量视为常数。z=fu,v)是变量u,v的函数,u,v又是x,y的函数。即,假定u=p(x,y),v=v(x,y)。

什么是复合函数

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。

复合函数怎么分解

复合函数如何拆分

复合函数进行拆分分解没有什么规律。

一般地,从外往里拆。比如y=ln(sinx^2).

y=lnu,u=sinv,v=x^2.

复合函数的分解

1.y=(x-1)?

内层函数t=g(x)=x-1,外层函数y=f(t)=t?

复合函数y=f(t)=f(g(x))=(x-1)?

2.y=ln(cosx)

内层函数t=g(x)=cosx,外层函数y=f(t)=lnt

复合函数y=f(t)=f(g(x))=ln(cosx)

3.y=sin?x

内层函数t=g(x)=sinx,外层函数y=f(t)=t?

复合函数y=f(t)=f(g(x))=(sinx)?=sin?x

4.y=sin(x/2)

内层函数t=g(x)=x/2,外层函数y=f(t)=sint

复合函数y=f(t)=f(g(x))=sin(x/2)