高三网 > 高考 > 高考备考 > 反三角函数高中数学公式

反三角函数高中数学公式

高老师 分享 时间:

反三角函数高中数学公式

反三角函数的和差公式与对应的三角函数的和差公式没有关系:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];

y=arccos(x),定义域[-1,1],值域[0,π];

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);

y=arccot(x),定义域(-∞,+∞),值域(0,π);

sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;

证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。

其他几个用类似方法可得。

cos(arccosx)=x,arccos(-x)=π-arccosx。

tan(arctanx)=x,arctan(-x)=-arctanx。

高中数学怎么快速提分

1、加强学法指导,培养良好的学习习惯,良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习的几个方面。

2、学好数学的方法就是要大量做题,反复去做,题做多了自然就知道哪些方面需要自己去加强学习,即使你不会做这道题,你也会找到一些解题的思路和技巧。

随时抱着空杯心态,俗话说得好,好脑瓜也赶不上一个烂笔头就是这个道理,多做题然后整理错题,及时回顾知识点,久而久之,你才能把它变成是你自己的东西。

3、专攻知识遗漏,专项的练习在于提高,在于清理知识的遗漏,对于经常做也不会的,或者也错的知识,应该多花一些时间来专项突破,这个方法对于提高成绩还是非常快速多的。

高中数学解题有效方法

一、数形结合法

高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”

这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。

根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。

二、排除解题法

排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。

排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”

当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。

三、方程解题法

很多数学题目中有着复杂的数量关系,而且涉及到许多知识点,当我们在解析题目中的数量关系时,如果直接对其数量关系进行分析,不仅增加我们解题过程,还会提高题目整体难度,这样我们就难以理清题目中的各种关系,给我们有效解决题目带来较大麻烦。

数学题目中的各种数量关系大都具有紧密联系,所以我们可以利用方程解题法建立多种数量关系,简化解题步骤,帮助我们更好解决数学问题。例如,题目为“双曲线C的离心率是2,其焦点主要为F1和F2,双曲线C上有一点A,如果|F1A|=2|F2A|,求cos∠AF2F1的值。”

这个问题中存在着较抽象的数量关系,如果直接利用已知条件求cos∠AF2F1的值,不仅会增加我们的解题步骤,而且很容易出现错误,所以我们可以利用方程解题法来解决这个问题。首先,由已知条件双曲线C的离心率是2可得出C=2a;然后可根据双曲线上点A建立表达式,2a=|F1A|-|F2A|,所以可计算出|F1A|=4a,|F2A|=2a,|F1F2|=2c;最后我们可以通过余弦定理建立方程式,

所以最后我们可以得出cos∠AF2F1的值为。

高三数学怎样复习好

1、及时进行查漏补缺。高三数学学习对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

2、高三学生要有积极的心态,对自己有信心。高三离高考越来越近,看着别的同学成绩逐渐上升,然而自己数学成绩一直都上不去,这时候难免就有些消极的情绪产生,觉得数学太难了或者自己不具备学数学的天赋等,这样就很容易打击自己学习数学的积极性,时间久了高三数学成绩就会越来越差。

3、培养数学思维是学好高三数学的前提。高中数学最主要的就是思维方式,如果你懂了数学如何去思考,就能懂得命题人是如何出题的,知道怎么去分析一道题目,该如何入手去解一道题。数学思维能帮助我们理清解题思路,根据已知条件,一步步推出未知条件。