高三网 > 高考 > 高考备考 > 关于高考圆的相关公式

关于高考圆的相关公式

高老师 分享 时间:

圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式,那么,想要学好数学,首先要掌握好数学公式。以下是关于高考圆的相关公式的相关内容,供大家参考!

圆的相关公式

一、周长公式

1、圆的周长:C=2πr(r:半径)

2、半圆周长:C=πr+2r

二、圆的面积

1、面积:S=πr?

2、半圆面积:S=πr?/2

三、弧长角度公式

1、扇形弧长:L=圆心角(弧度制)×R=nπR/180(θ为圆心角)(R为扇形半径)

2、扇形面积:S=nπR?/360=LR/2(L为扇形的弧长)

3、圆锥底面半径:r=nR/360(r为底面半径)(n为圆心角)

4、扇形面积公式:S=nπr?/360=rl/2

R:半径,n:弧所对圆心角度数,π:圆周率,L:扇形对应的弧长。

也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。

四、圆的方程:

1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

2、圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

五、圆和点的位置关系:

以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.< p="">

六、直线与圆有3种位置关系:

无公共点为相离;

有两个公共点为相交;

圆与直线有唯一公共点为相切。这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。< p="">。

周长怎么算直径圆的相关公式有哪些

圆的周长公式应该知道圆的周长就等于πd,d是直径,也可以说2πr,r是半径。那π呢一般情况下取值为3.14。所以直径就等于周长除以π。

已知圆的周长求直径怎么计算

直径=周长÷π

因为圆的周长公式为:周长=π×直径,所以知道周长后,直径=周长÷π

在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。

圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。

对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。

圆的面积怎么求

π是固定比值,π读作pai,是圆周率的符号,数值在3.1415926-3.1415927之间,目前小学生用到的数值为3.14。

圆的直径一般用D来代表,当我们一直D的数字时,可以和固定数值π,组成不同的计算公式,如计算圆的周长(C),我们用公式C=πD来计算。

圆的半径用英文“r”表示,数值为直径D的一半,即?D=r,所以当已知半径时,我们可以求出直径、周长和面积的数值。

当我们已知圆的半径r时,用公式S=πr?计算,为:3.14__r?,得出的结果就是圆的面积。当我们已知半径或直径的数值时,求圆的周长公式为π__D或π__2r,得出的结果就是圆的周长。

圆的面积公式有哪些

圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于 π乘圆的直径(D)等于圆的周长(C),C=πd。

而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。把圆平均分成若干份,可以拼成一个近似的长方形。

长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π,S=πr2 。

圆的十八个定理

1、圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

推论2:圆的两条平行弦所夹的弧相等

4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。

5、切线长定理:从圆外一点引圆的两条切线,他们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。

6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。如果他们相交,那么交点一定在两圆的连心线上。

7、相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。

8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。

9、割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

10、切线的性质定理:圆的切线垂直于经过切点的半径

推论1:经过圆心且垂直于切线的直线必经过切点

推论2:经过切点且垂直于切线的直线必经过圆心

11、弦切角定理:弦切角等于它所夹的弧对的圆周角

推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

12、定理:相交两圆的连心线垂直平分两圆的公共弦

13、定理:把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

14、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

15、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

16、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

18、(d是圆心距,R、r是半径)

①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-r<dr)< p="">

④两圆内切d=R-r(R>r)

⑤两圆内含dr)。