高三网 > 高考 > 高考备考 > 高中数学必背知识点

高中数学必背知识点

高老师 分享 时间:

高中数学必背知识点

空间几何体表面积体积公式:

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,S=6a2,V=a3

4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱S-h-高V=Sh

6、棱锥S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、r-底半径h-高V=πr^2h/3

12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

13、球r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高中数学必修知识点

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1.定义法

判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。

2.转换法

当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法

在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

若A?B,则p是q的充分条件。

若A?B,则p是q的必要条件。

若A=B,则p是q的充要条件。

若A?B,且B?A,则p是q的既不充分也不必要条件。

高中数学复习知识点

1、科学记数法:把一个数字写成的形式的记数方法。

2、统计图:形象地表示收集到的数据的图。

3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。

4、条形统计图:清楚地表示出每个项目的具体数目。

5、折线统计图:清楚地反映事物的变化情况。

6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。

7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。

8、事件的概率:可用事件结果除以所以可能结果求得理论概率。

9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。

10、游戏双方公平:双方获胜的可能性相同。

11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。

13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。

14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。

15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。

16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。

17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。

18、频数:每次对象出现的次数。

19、频率:每次对象出现的次数与总次数的比值。

20、级差:一组数据中数据与最小数据的差,刻画数据的离散程度。

21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度。

21、标准方差:方差的算数平方根刻画数据的离散程度。

23、一组数据的级差、方差、标准方差越小,这组数据就越稳定。

24、利用树状图或表格方便求出某事件发生的概率。

25、两个对比图像中,坐标轴上同一单位长度表示的意义一致,纵坐标从0开始画。

高中数学知识点梳理

指数与指数幂的运算

1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示、式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

当是偶数时,正数的次方根有两个,这两个数互为相反数、此时,正数的正的次方根用符号表示,负的次方根用符号-表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

2、分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂、

高中数学知识点总结

1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.