高三网 > 高考 > 高考备考 > 非零特征值的个数与秩有什么关系

非零特征值的个数与秩有什么关系

高老师 分享 时间:

非零特征值的个数与秩的关系:如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。对于方阵而言,秩不小于非零特征值的个数。

矩阵的秩和特征值个数的关系

关系:

1、方阵A不满秩等价于A有零特征值。

2、A的秩不小于A的非零特征值的个数。

证明:

定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。

定理2:设A为n阶实对称矩阵,则A必能相似对角化。

定理3:设A为n阶实对称矩阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0恰为A的n-k重特征值。

定理4:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0至少为A的n-k的重特征值。

定理5:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),且A可相似对角化,则λ=0恰为A的n-k重特征值。

定理6:设A为n阶方阵,矩阵的秩rf(A)=k,(0<k<n,k为正整数),且A可对角化,则λ=0恰为f(A)的n-k重特征值。

矩阵的秩的变化规律及证明

1、转置后秩不变

2、r(A)<=min(m,n),A是m*n型矩阵

3、r(kA)=r(A),k不等于0

4、r(A)=0 <=> A=0

5、r(A+B)<=r(A)+r(B)

6、r(AB)<=min(r(A),r(B))

7、r(A)+r(B)-n<=r(AB)

证明:

AB与n阶单位矩阵En构造分块矩阵

|AB O|

|O En|

A分乘下面两块矩阵加到上面两块矩阵,有

|AB A|

|0 En|

右边两块矩阵分乘-B加到左边两块矩阵,有

|0 A |

|-B En|

所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)

即r(A)+r(B)-n<=r(AB)