矩阵等价的充要条件
由 高老师 分享
时间:
推荐文章
同型矩阵且秩相等。相似必定等价,等价不一定相似。两矩阵等价,秩相等,列向量,行向量极大线性无关组数相等。若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。
等价矩阵的性质
矩阵A和A等价(反身性);
矩阵A和B等价,那么B和A也等价(等价性);
矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
具有行等价关系的矩阵所对应的线性方程组有相同的解
对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:矩阵可以通过基本行和列操作的而彼此变换。当且仅当它们具有相同的秩时,两个矩阵是等价的。
充要条件的含义
充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,而且也能从命题q推出命题p,则称p是q的充分必要条件,且q也是p的充分必要条件。
如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件(简称充要条件),反之亦然。
上一篇:movement可数吗