高三网 > 高考 > 高考备考 > 等差数列求和公式及推导

等差数列求和公式及推导

高老师 分享 时间:

等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

等差数列求和公式

等比数列求和公式推导

错位相减法

Sn=a1+a2 +a3 +...+an

Sn*q= a1*q+a2*q+...+a(n-1)*q+an*q= a2 +a3 +...+an+an*q

以上两式相减得(1-q)*Sn=a1-an*q

数学归纳法

证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;

(2)假设当n=k(k≥1,k∈N*)时,等式成立,即ak=a1qk-1;

当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;

这就是说,当n=k+1时,等式也成立;

由(1)(2)可以判断,等式对一切n∈N*都成立。