双曲线的性质
由 高老师 分享
时间:
推荐文章
双曲线的性质:1、取值区域:x≥a,x≤-a或者y≥a,y≤-a;2、对称性:关于坐标轴和原点对称。3、顶点:A(-a,0)A’(a,0)AA’叫做双曲线的实轴,长2a;B(0,-b)B’(0,b)BB’叫做双曲线的虚轴,长2b等。
双曲线的性质
1、取值区域:
x≥a,x≤-a或者y≥a,y≤-a
2、对称性:
关于坐标轴和原点对称。
3、顶点:
A(-a,0)A’(a,0)AA’叫做双曲线的实轴,长2a;B(0,-b)B’(0,b)BB’叫做双曲线的虚轴,长2b。
4、渐近线:
横轴:y=±(b/a)x竖轴:y=±(a/b)x
5、离心率:
e=c/a取值范围:(1,+∞)
6、双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率。
7、双曲线焦半径公式:
圆锥曲线上任意一点到焦点距离。过右焦点的半径r=|ex-a|;过左焦点的半径r=|ex+a|
8、等轴双曲线
双曲线的实轴与虚轴长相等,2a=2b e=√2
9、共轭双曲线
(x^2/a^2)-(y^2/b^2)=1与(y^2/b^2)-(x^2/a^2)=1叫共轭双曲线
(1)共渐近线
(2)e1+e2>=2√2
10、准线:
x=±a^2/c,或者y=±a^2/c