高三网 > 高考 > 高考备考 > 绝对值的代数意义和几何意义

绝对值的代数意义和几何意义

高老师 分享 时间:

绝对值几何意义:在数轴上,一个数到原点的距离叫做该数的绝对值。表示数轴上表示a的点和表示b的点的距离。绝对值代数意义:非负数(正数和0)的绝对值是它本身,非正数(负数)的绝对值是它的相反数。

什么是绝对值

绝对值是指一个数在数轴上所对应点到原点的距离,用“||”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。

在数学中,绝对值或模数|x|的非负值,而不考虑其符号,即|x|=x表示正x,|x|=-x表示负x(在这种情况下-x为正),|0|=0。例如,3的绝对值为3,-3的绝对值也为3。数字的绝对值可以被认为是与零的距离。

实数的绝对值的泛化发生在各种各样的数学设置中,例如复数、四元数、有序环、字段和向量空间定义绝对值。绝对值与各种数学和物理环境中的大小,距离和范数的概念密切相关。

绝对值的性质

(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。

(2)绝对值等于0的数只有一个,就是0。

(3)绝对值等于同一个正数的数有两种,这两个数互为相反数或相等。

(4)互为相反数的两个数的绝对值相等。

(5)正数的绝对值是它本身。

(6)负数的绝对值是它的相反数。

(7)0的绝对值是0。