无穷小和无穷大的关系
由 高老师 分享
时间:
推荐文章
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时,f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
无穷大的倒数等于无穷小,无穷小的倒数(当其不等于0时,因为此时倒数才有意义,而无穷小量是可能取0的)是无穷大量。无穷大就是在自变量的某个变化过程中绝对值无限增大的变量或函数。无穷大与无穷小具有倒数关系,即当x→a是f(x)为无穷大,则1/f(x)为无穷小。无穷大为数学符号,是一种变量,记作∞。
上一篇:蔚然成风是褒义还是贬义
下一篇:无限循环小数化成分数的方法