高三网 > 高考 > 高考备考 > 函数与反函数关于什么对称

函数与反函数关于什么对称

高老师 分享 时间:

函数与反函数关于关于y=x对称。如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。

反函数的性质

(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;

(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

(3)一个函数与它的反函数在相应区间上单调性一致;

(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

(5)一段连续的函数的单调性在对应区间内具有一致性;

(6)严增(减)的函数一定有严格增(减)的反函数;

(7)反函数是相互的且具有唯一性;

(8)定义域、值域相反对应法则互逆(三反);

(9)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I}内也可导;

(10)y=x的反函数是它本身。