什么是对数应用在哪些方面
由 高老师 分享
时间:
推荐文章
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。下面是小编整理的详细内容,一起来看看吧!
对数的定义
对数函数是6类基本初等函数之一。其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。
对数的应用
对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。
上一篇:折射和反射的区别举例说明
下一篇:平面镜成像原理它是光的反射吗