高考数学六大专题二轮复习攻略!附各分数段考生提分建议
推荐文章
高考数学是很多高三考生的一道坎。数学得高分,一步迈进名校门,数学失分多,则名次总分一落千丈。在一轮复习中,老师带领考生们以大纲为指导,以教材为基础对知识点进行了全面复习。二轮复习的重点则侧重于提升解题技能,同时不断完善考生的数学知识体系,双轨并行,切实提分。所以说,二轮数学的复习更是至关重要。
数学二轮复习的目标
想要获得二轮复习的胜利,考生们应该在这两个多月的时间里达成以下两点目标。
目标1:进一步加强对知识点的巩固、强化。
尤其要重点巩固常考知识点、重难知识点,注重对已经复习掌握过的知识的融会、贯通、透析、运用,把握每个知识点背后的潜在出题规律。
目标2:如何将打磨过的知识点运用到做题中去。
近期完整的大考机会将增多,考生要抓住实战演习的每一次机会,掌握做题技巧,规范答题语言,以不变的知识点应万变的考试题。充分利用二轮复习的两个多月,把知识点和答题技巧完美掌握结合,助力高考得高分。
数学二轮复习六大建议
01 函数与导数
近几年高考中, 函数类试题一般会出现2道选择题、2道填空题、1道解答题。
其中,选择题和填空题经常考的知识点更偏向反函数,函数的定义域和值域,函数的单调性、奇偶性、周期性,函数的图象、导数的概念和应用等,这些知识点要着重复习。
而在分值颇高的解答题中,通常会考查考生对于函数与导数、不等式运用等考点的掌握运用情况。掌握题目背后的知识点,建立自己的答题思路是非常重要的。
值得考生们注意的是,函数和导数的考查,经常会与其他类型的题目交叉出现,所以需要重视交叉考点问题的训练。
02 三角函数、平面向量和解三角形
三角函数是每年必考题,虽是重点但难度较小。哪怕是基础一般的同学,经过二轮复习的千锤百炼,都可以掌握这部分内容。所以,三角函数类题目争取一分都不要丢!
从题型来看,会覆盖选择题、填空题、解答题三大类型。大题会出现在二卷解答题的第一个,也证明此类型题目的难度比较小。
在三角函数的部分,高三考生需要熟练的知识点有不少。
(1)掌握三角变换的所有公式,理解公式的意义、应用场景、考查形式、使用方法等。
(2)熟悉三角变换常用的方法——化弦法、降幂法、角的变换法等。应用以上方法进行三角函数式的求值、化简、证明。
(3)掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题。
(4)熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质。同时,也要掌握这些函数图象的形状、特点。
(5)掌握三角函数不等式口诀:sinα上正下负;cosα右正左负;tanα奇正偶负。
03 数列
数列是高中数学的重要内容,每年高考都会考查等差数列、等比数列等重点知识点。考查题型常为填空题、选择题、解答题。小题考查的知识点大都比较基础,难度不大;解答题中有难度中等,最后一题的综合题目难度较大。
近年的高考试题中相关题目主要考查数列本身知识,等差数列与等比数列的概念、性质、通项公式及求和公式;数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合;数列的应用问题,其中主要是以增长率问题为主。
考生应强化对这些知识点的掌握和应用,找到解题规律,争取看到等差、等比数列不再头痛丢分!
04 立体几何
立体几何的考查的题型也覆盖选择题目、填空题和解答题。通常情况下选择题目、填空题共三道, 解答题一道, 总分25-30分之间。
填空题和选择题主要考查立体几何的计算型问题,解答题着重考查建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
立体几何题目在解答和练习时应该这么做。
(1)审清题目。不要上来盲目就做题,文字加见图案不看清楚很容易懵圈了,之后再次读题就会思路不清、得分困难了。看题目中的已知条件、未知条件和所求结果是什么。
(2)看图分析。审题后就是静下心来先看清题目中是什么几何体。之后,分析几何体结构特征。看题目中的面面、线面、线线之间有哪些关系(平行、垂直、相等)。重点需要注意的是图形中的面面垂直、线面垂直,线线平行、线面平行等关系。
(3)整理思路找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。
(4)做题检验。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。对所得的结论进行验证,对解题方法进行总结。
05 解析几何
解析几何是重点也是公认的难点,高考的解析结合涉及的知识点有直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等。高考试题中有时将以上的知识点进行交叉综合考查,让考试的难度更大了。
(1)基础知识很重要。对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。
(2)概念掌握要牢靠。明确直线及其方程部分的基本的概念,直线的斜率、倾斜角以及斜率和倾斜角之间的关系。熟记圆的标准方程和一般方程分别代表的含义。对于椭圆、抛物线、双曲线,考生要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。
(3)解题思路。考生应在二轮复习过程中学会解决不同问题的方法,并进行分门别类的及时总结,勤加复习,做到熟稔于心。
对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。
06 概率与统计
概率统计类型的试题约为两题左右,难度为中等或中等偏易。同时,概率统计题常对课本原题进行改编,考查基础,贴近学生的生活总体,总体来说此类型试题的难度不大。
概率与统计试题频繁考查基本概念和基本公式,需要考生们进行熟练的掌握。比如:对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望、方差、抽样方法等知识点。
不同分数段考生提分建议
60分考生赶紧去啃公式
对于做历年试题、模考题能考60分,目标分数是90分的同学来说,梳理知识点很关键,因为考60分说明知识点没掌握好。数学科目中固定的公式其实没有同学们想象得那么多,一口气背下来,做题就会顺利很多。
80-90分奔120+的考生要总结常考题型
那些现在能考八九十分,努力要拿下120分的同学,一般缺乏的是知识框架和条理。考生可把数学大题的每一道题作为一个章节,自己或者找老师把每章节的知识脉络捋顺。
在这个基础上,再试着总结每道大题常考的几种题型。例如,数列题基本上第一问求通项公式(记住求通项公式常用的几种办法),第二问求前N项和(通常裂项相消或错位相减)或者数列的证明(包括不等式证明)。
这样做题的时候大部分的内容就都了然于胸。只是要符合总结的框架套路的题,都是可以直接秒刷的,所花费的时间是用来计算、写字的。能做到这样,120分就不在话下了。
其实要拿到120分并不难,只要分配好各种题型的丢分就可以了。选择加填空最多错3个,这个可以通过训练达到,因为大部分的题都是固定的。一般来说,有集合的题(称之为“简单送分的)、向量的题(送分的)、充分必要条件的题(送分的)、复数的题(送分的),立体几何三视图还原求体积表面积的题(经过训练就是送分的),有的省份还有线性规划的题(经过训练也是送分的)。当你总结出题目的出题策略时,答题就变得很简单了。
关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。至于解析几何,按照套路去写,有的题写着写着就有思路了。导数如果想出难题也可以非常难,但想拿满分也是很困难的。所以建议同学这两道题上可以丢一些分。总结下来,小题部分,15分可以丢;大题部分,丢分尽量控制在15分的范围内。
120+奔140+的考生要减少总体失分
分数达到120+的同学,知识框架应该有了,做题的套路也有一些了。那么怎么提高?可以从上述丢分的地方抢分,把选填的分数拿到,把标准提高到最多错一个;大题部分就在丢分那两道题里再找提高的空间。
考生要注意,这个时候前4道大题基本是不可再丢分的,否则就永远陷在120+的循环里出不来,最后都不知道该补哪一块了
140+奔150的同学要转移复习中心
现在数学140+,努力奔向150的同学们,只有一个建议——好好学英语、语文或其他科目去吧,你们的提升空间不在数学上。
下一篇:高考数学:不同题型的答题套路来了