高考数学复习资料填空题答题方法
推荐文章
高考数学复习填空题解题方法
方法一、直接法
直接法就是从题设条件出发,运用定义、定理、公式、性质等,通过变形、推理、运算等过程,直接得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.
适用范围:对于计算型的试题,多通过计算求结果. 方法点津:直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键. 方法二、特殊值法
当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.
适用范围:求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.
方法点津:
填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值是适用此法的前提条件.
方法三、数形结合法
对于一些含有几何背景的填空题,若能以数辅形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,如Venn图、三角函数线、函数的图象及方程的曲线、函数的零点等.
适用范围:图解法是研究求解问题中含有几何意义命题的主要方法,解题时既要考虑图形的直观,还要考虑数的运算.
方法点津:
图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.
方法四、构造法
构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型(如构造函数、方程或图形),从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.
方法点津:构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.
高考数学复习答题方法的铁律
1.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
2.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;
3.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
5.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
高考数学冲刺复习的提醒
(一)数学复习 适当“读题”
读题的任务就是要理清解题思路,明确解题步骤,分析最佳解题切入点。读题强调解读结合,边“解”边“读”,以“解”为主。“解”的目的是为了加深印象:“读”就是将已经熟练了的部分跳过去,单刀直入,解决最关键的环节,收到省时、高效的效果。
(二)数学复习 错题重做
临近考试,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的问题。
(三)数学复习 基础训练
客观题指选择题和填空题。最后冲刺阶段的训练以客观题和前三个解答题为主,其训练内容应包括以下方面:基础知识和基本运算;解选择题填空题的策略;传统知识板块的保温;对知识网络交会点处的“小题大做”。
上一篇:高考数学常考知识点
下一篇:高考数学答题应试技巧有哪些