高三网 > 高考 > 高考备考 > 高中数学难点易错点解析

高中数学难点易错点解析

高老师 分享 时间:

高中数学难点易错点解析

高中数学在学习的过程中,有很多知识点难点。如何不及时解决,接下来的高中数学学习会越来越难。下面是小编整理的高中数学难点易错点解析,希望能对大家有所帮助。

高中数学难点易错点解析

函数零点定理使用不当致误

错因分析如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。

混淆两类切线致误

错因分析曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。

导数与极值关系不清致误

错因分析在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。

用错基本公式致误

错因分析等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q=?1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

对等差、等比数列的性质理解错误

错因分析等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。

一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。

高中数学难点易错点解析

线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。

求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

两条异面直线所成的角的范围:0°﹤α≤90°,直线与平面所成的角的范围:0o≤α≤90°,二面角的平面角的取值范围:0°≤α≤180°。

你知道异面直线上两点间的距离公式如何运用吗?

平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?

解排列组合问题的依据是:

分类相加,分步相乘,有序排列,无序组合。

以上《高中数学难点易错点解析》由有途网小编整理,更多关于高中数学内容请关注有途网!