高三网 > 高考 > 高考备考 > 中国诞生世界首例基因编辑婴儿 附相关考点

中国诞生世界首例基因编辑婴儿 附相关考点

高老师 分享 时间:

  艾滋病是医学界多年以来渴望攻克的难关,如果有人本身对艾滋病免疫又会怎样?昨天,「世界首例免疫艾滋病的基因编辑婴儿在中国诞生」的新闻不仅令学术界为之轰动,也在网络和媒体上引起了巨大争议。

  公布这一消息是的是来自南方科技大学的贺建奎团队,但南科大校方发表情况声明,称对此研究不知情。

  关于贺建奎副教授

  对人体胚胎进行基因编辑研究的情况声明


  今日,有媒体报道贺建奎副教授(已于2018年2月1日停薪留职,离职期为2018年2月—2021年1月)对人体胚胎进行了基因编辑研究,我校深表震惊。在关注到相关报道后,学校第一时间联系贺建奎副教授了解情况,贺建奎副教授所在生物系随即召开学术委员会,对此研究行为进行讨论。根据目前了解到的情况,我校形成如下意见:

  一、此项研究工作为贺建奎副教授在校外开展,未向学校和所在生物系报告,学校和生物系对此不知情。

  二、对于贺建奎副教授将基因编辑技术用于人体胚胎研究,生物系学术委员会认为其严重违背了学术伦理和学术规范。

  三、南方科技大学严格要求科学研究遵照国家法律法规,尊重和遵守国际学术伦理、学术规范。我校将立即聘请权威专家成立独立委员会,进行深入调查,待调查之后公布相关信息。

南方科技大学

  2018年11月26日

  据人民网11月26日报道,在第二届国际人类基因组编辑峰会召开前一天,贺建奎宣布:一对名为露露和娜娜的基因编辑双胞胎姐妹于11月在中国健康诞生。

  这对双胞胎姐妹尚处于胚胎未植入母亲子宫时,其中一个基因(CCR5)经过基因编辑修改,使她们出生后即能天然抵抗艾滋病。这是世界首例免疫艾滋病的基因编辑婴儿。

  这项由研究人员率先口头发表的成果目前尚未以论文形式正式发表,也未由领域内其他专家审核。但该消息目前已引发全球哗然,宾夕法尼亚大学基因编辑专家Kiran Musunuru在接受美联社采访时表示,“这是不合理的。”加州斯克里普斯研究转化研究所(Scripps Research Translational Institute)所长、基因组学家Eric Topol认为,“这还为时过早。”美联社报道中则称,许多主流科学家认为这太不安全,其中一些甚至谴责这项研究为“人体试验”。

  香港大学李嘉诚医学院艾滋病研究所所长陈志伟11月26日接受澎湃新闻(www.thepaper.cn)采访时表示,“对没有科学论文正式发表的消息, 是不应该胡乱宣传,更无法点评的。”但就健康胚胎进行CCR5编辑,陈志伟认为,“这是不理智的,不伦理的。”

  “超越诺贝尔奖技术体外受精”

  据贺建奎介绍,他为7对夫妇改变了胚胎,其中1对最终顺利怀孕。但他的目标不是治愈或预防一种遗传性疾病,而是试图赋予一种很少有人天生具备的特性——一种抵抗未来可能感染艾滋病病毒的能力。

  据中国临床试验注册中心(ChiCTR)可查阅的《深圳和美妇儿科医院医学伦理委员会审查申请书》(下称“《伦理申请书》”)。这项名为“CCR5基因编辑”的科研项目起始时间为2017年3月,项目历时2年,项目负责人为贺建奎。

  《伦理申请书》显示,该研究拟采用CRISPR-Cas9技术对胚胎进行基因编辑,通过胚胎植入前遗传学检测和孕期全方位检测可以获得具有CCR5基因编辑的个体,使婴儿从植入母亲子宫之前就获得了抗击霍乱、天花或艾滋病的能力。

  贺建奎对美联社称,参与该项目的所有父亲都感染了艾滋病毒,而母亲都没有。但他们基因编辑的目的不是为了防止小的传播风险,而是为感染艾滋病毒的夫妇提供一个机会,让他们有机会生下一个可能免受类似命运影响的孩子。

  卫计委:基因编辑婴儿未经医学伦理报备

  有网友质疑,该项目进行前是否通过伦理审查?新京报记者曾致电深圳市卫生计生委医学伦理专家委员会,委员会相关负责人告诉记者,正在开会讨论此事,此前并未收到项目的伦理审查报备。

  此外,11月26日下午,因“世界首例免疫艾滋病的基因编辑婴儿”而被卷入漩涡的深圳和美妇儿科医院总经理程珍回复澎湃新闻称,刚知道此事,目前正在了解,唯一可以确定是,“孩子不是在医院出生,也不是在医院做的实验”。

  针对贺建奎与深圳和美的关系,程珍表示“没有关系”,但对于网上传出的盖有深圳和美医院印章的医学伦理委员会审查申请书,程珍表示“仍在调查中”。

  【人民日报评基因编辑婴儿:科技发展不能把伦理留在身后】

  近日,一对基因编辑婴儿成了舆论的焦点。这样的医学行为不是割双眼皮那么简单,更不是“一个愿打一个愿挨”,它关系到人类基因的谱系,关系到每一个人,也蕴含着伦理风险。人文科学,应该走到科技的前面去;人文关怀,更应该走到科学的内部去。


  三、染色体变异在育种上的应用

  1、多倍体育种:

  方法:用秋水仙素处理萌发的种子或幼苗。(能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)

  原理:染色体变异

  实例:三倍体无子西瓜的培育

  优缺点:培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。

  2、单倍体育种:

  方法:花粉(药)离体培养

  原理:染色体变异

  实例:矮杆抗病水稻的培育

  例:在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR ,应该怎么做?

  优缺点:后代都是纯合子,明显缩短育种年限,但技术较复杂。

  【附】育种方法小结

  诱变育种

  杂交育种

  多倍体育种

  单倍体育种

  方法

  用射线、激光、化学药品等处理生物

  杂交

  用秋水仙素处理萌发的种子或幼苗

  花药(粉)离体培养

  原理

  基因突变

  基因重组

  染色体变异

  染色体变异

  优缺点

  加速育种进程,大幅度地改良某些性状,但有利变异个体少。

  方法简便,但要较长年限选择才可获得纯合子。

  器官较大,营养物质含量高,但结实率低,成熟迟。

  后代都是纯合子,明显缩短育种年限,但技术较复杂。

  第3节 人类遗传病

  一、人类遗传病与先天性疾病区别:

  (1)遗传病:由遗传物质改变引起的疾病。(可以生来就有,也可以后天发生)

  (2) 先天性疾病:生来就有的疾病。(不一定是遗传病)

  二、人类遗传病产生的原因:人类遗传病是由于遗传物质的改变而引起的人类疾病

  三、人类遗传病类型

  (一)单基因遗传病

  1、概念:由一对等位基因控制的遗传病。

  2、原因:人类遗传病是由于遗传物质的改变而引起的人类疾病

  3、特点:呈家族遗传、发病率高(我国约有20%--25%)

  4、类型:

  (二)多基因遗传病

  1、概念:由多对等位基因控制的人类遗传病。

  2、常见类型:腭裂、无脑儿、原发性高血压、青少年型糖尿病等。

  (三)染色体异常遗传病(简称染色体病)

  1、概念:染色体异常引起的遗传病。(包括数目异常和结构异常)

  2、类型:

  四、遗传病的监测和预防

  1、产前诊断:胎儿出生前,医生用专门的检测手段确定胎儿是否患某种遗传病或先天性疾病,产前诊断可以大大降低病儿的出生率

  2、遗传咨询:在一定的程度上能够有效的预防遗传病的产生和发展

  五、实验:调查人群中的遗传病

  注意事项:

  1、调查遗传方式——在家系中进行

  2、调查遗传病发病率——在广大人群随机抽样

  【注】调查群体越大,数据越准确

  六、人类基因组计划:是测定人类基因组的全部DNA序列,解读其中包含的遗传信息。需要测定22+XY共24条染色体。

  第六章 从杂交育种到基因工程

  第1节 杂交育种与诱变育种

  一、各种育种方法的比较:

  杂交育种

  诱变育种

  多倍体育种

  单倍体育种

  处理

  杂交→自交→选优→自交

  用射线、激光、化学药物处理

  用秋水仙素处理

  萌发后的种子或幼苗

  花药离体培养

  原理

  基因重组,

  组合优良性状

  人工诱发基因

  突变

  破坏纺锤体的形成,使染色体数目加倍

  诱导花粉直接发育,再用秋水仙素

  优缺点

  方法简单,

  可预见强,

  但周期长

  加速育种,改良性状,但有利个体不多,需大量处理

  器官大,营养物质含量高,但发育延迟,结实率低

  缩短育种年限,

  但方法复杂,

  成活率较低

  例子

  水稻的育种

  高产量青霉素菌株

  无子西瓜

  抗病植株的育成

  第2节 基因工程及其应用

  一、基因工程

  1、概念:基因工程又叫基因拼接技术或DNA重组技术。通俗得说,就是按照人们意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。

  2、原理:基因重组

  3、结果:定向地改造生物的遗传性状,获得人类所需要的品种。

  二、基因工程的工具

  1、基因的“剪刀”—限制性核酸内切酶(简称限制酶)

  (1)特点:具有专一性和特异性,即识别特定核苷酸序列,切割特定切点。

  (2)作用部位:磷酸二酯键

  (3)例子:EcoRI限制酶能专一识别GAATTC序列,并在G和A之间将这段序列切开。

  (4)切割结果:产生2个带有黏性末端的DNA片断。

  (5)作用:基因工程中重要的切割工具,能将外来的DNA切断,对自己的DNA无损害。

  【注】黏性末端即指被限制酶切割后露出的碱基能互补配对。

  2、基因的“针线”——DNA连接酶

  (1)作用:将互补配对的两个黏性末端连接起来,使之成为一个完整的DNA分子。

  (2)连接部位:磷酸二酯键

  3、基因的运载体

  (1)定义:能将外源基因送入细胞的工具就是运载体。

  (2)种类:质粒、噬菌体和动植物病毒。

  三、基因工程的操作步骤

  1、提取目的基因

  2、目的基因与运载体结合

  3、将目的基因导入受体细胞

  4、目的基因的检测和鉴定

  四、基因工程的应用

  1、基因工程与作物育种:转基因抗虫棉、耐贮存番茄、耐盐碱棉花、抗除草作物、转基因奶牛、超级绵羊等等

  2、基因工程与药物研制:干扰素、白细胞介素、溶血栓剂、凝血因子、疫苗

  3、基因工程与环境保护:超级细菌

  五、转基因生物和转基因食品的安全性

  两种观点是:

  1、转基因生物和转基因食品不安全,要严格控制。

  2、转基因生物和转基因食品是安全的,应该大范围推广。

  第七章 现代生物进化理论

  一、拉马克的进化学说

  1、理论要点:用进废退;获得性遗传

  2、进步性:认为生物是进化的。

  二、达尔文的自然选择学说

  1、理论要点:自然选择(过度繁殖→生存斗争→遗传和变异→适者生存)

  2、进步性:能够科学地解释生物进化的原因以及生物的多样性和适应性。

  3、局限性:

  (1)不能科学地解释遗传和变异的本质;

  (2)自然选择对可遗传的变异如何起作用不能作出科学的解释。(对生物进化的解释仅局限于个体水平)

  三、现代达尔文主义

  (一)种群是生物进化的基本单位(生物进化的实质:种群基因频率的改变)

  1、种群:

  概念:在一定时间内占据一定空间的同种生物的所有个体称为种群。

  特点:不仅是生物繁殖的基本单位;而且是生物进化的基本单位。

  2、种群基因库:一个种群的全部个体所含有的全部基因构成了该种群的基因库。

  3、基因(型)频率的计算:

  (1)按定义计算:

  例:从某个群体中随机抽取100个个体,测知基因型为AA、Aa、aa的个体分别是30、60和10个,则:基因型AA的频率为______;基因型Aa的频率为 ______;基因型 aa的频率为 ______。基因A的频率为______;基因a的频率为 ______。

  答案:30% 60% 10% 60% 40%

  ②某个等位基因的频率 = 它的纯合子的频率 + ?杂合子频率

  例:某个群体中,基因型为AA的个体占30%、基因型为Aa的个体占60% 、基因型为aa的个体占10% ,则:基因A的频率为______,基因a的频率为 ______

  答案: 60% 40%

  (二)突变和基因重组产生生物进化的原材料

  (三)自然选择决定进化方向:在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。

  (四)突变和基因重组、选择和隔离是物种形成机制。

  1、物种:指分布在一定的自然地域,具有一定的形态结构和生理功能特征,而且自然状态下能相互交配并能生殖出可育后代的一群生物个体。

  2、隔离:

  地理隔离:同一种生物由于地理上的障碍而分成不同的种群,使得种群间不能发生基因交流的现象。

  生殖隔离:指不同种群的个体不能自由交配或交配后产生不可育的后代。

  3、物种的形成:

  (1)物种形成的常见方式:地理隔离(长期)→生殖隔离

  (2)物种形成的标志:生殖隔离

  (3)物种形成的3个环节:

  ①突变和基因重组:为生物进化提供原材料

  ②选择:使种群的基因频率定向改变

  ③隔离:是新物种形成的必要条件

  四、生物进化的基本历程

  1、地球上的生物是从单细胞到多细胞,从简单到复杂,从水生到陆生,从低级到高级逐渐进化而来的。

  2、真核细胞出现后,出现了有丝分裂和减数分裂,从而出现了有性生殖,使由于基因重组产生的变异量大大增加,所以生物进化的速度大大加快。

  五、生物进化与生物多样性的形成

  1、生物多样性与生物进化的关系是:生物多样性产生的原因是生物不断进化的结果;而生物多样性的产生又加速了生物的进化。

  2、生物多样性包括:遗传(基因)多样性、物种多样性和生态系统多样性三个层次。

  选修三

  "基因工程"知识点

  基因工程的概念 :

  基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

  基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。

  基因工程的原理:基因重组

  1.1DNA重组技术的基本工具

  1.“分子手术刀”——限制性核酸内切酶(限制酶)

  (1)来源:主要是从原核生物中分离纯化出来的。

  (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

  (3)方式:当限制酶在它识别序列的中心轴线(图中虚线)两侧将DNA的两条链分别切开时,产生黏性末端,当限制酶在它识别序列的中心轴线处切开时,产生平末端。

  平末端

  (4)结果:经限制酶切割产生的DNA片段末端有两种形式:黏性末端和平末端。

  2.“分子缝合针”——DNA连接酶

  两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:

  ①相同点:都缝合磷酸二酯键。

  ②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。

  3.“分子运输车”——基因进入受体细胞的载体

  (1)常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

  (2)载体具备的条件:

  ①能在受体细胞中复制并稳定保存。

  ②具有一至多个限制酶切点,供外源DNA片段插入。

  ③具有标记基因(如四环素抗性基因、氨苄青霉素抗性基因),供重组DNA的鉴定和选择。

  (3)其它载体:λ噬菌体的衍生物、动植物病毒

  1.2基因工程的基本操作程序

  基因工程的基本操作程序主要包括四个步骤:目的基因的获取、基因表达载体的构建、将目的基因导入受体细胞、目的基因的检测与鉴定。

  目的基因的获取

  1.目的基因是指: 编码蛋白质的结构基因 。

  2.从基因文库中获取目的基因

  基因文库:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。

  基因组文库:含有某种生物全部基因的基因文库称为基因组文库。

  部分基因文库:含有一种生物的一部分基因的基因文库称为部分基因文库,如cDNA文库。

  获取目的基因需要的信息:基因的核苷酸序列;基因的功能;基因在染色体的位置;基因的转录产物mRNA;以及基因表达产物蛋白质。

  3.PCR技术扩增目的基因

  (1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。

  (2)目的:获取大量的目的基因

  (3)原理:DNA双链复制

  (4)过程:第一步:加热至90~95℃,DNA解链为单链;

  第二步:冷却到55~60℃,引物与两条单链DNA结合;

  第三步:加热至70~75℃,Taq酶从引物起始进行互补链的合成。

  (5)特点:指数(2n)形式扩增

  基因表达载体的构建(核心)

  1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。

  2.组成:目的基因+启动子+终止子+标记基因

  (1)启动子:

  是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,它能驱动基因转录出mRNA,最终获得所需的蛋白质。

  (2)终止子:

  是一段有特殊结构的DNA片段 ,位于基因的尾端,是转录在需要的地方停下来。

  (3)标记基因的作用:

  是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。如抗生素基因。

  将目的基因导入受体细胞

  1.转化的概念:

  是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。

  2.常用的转化方法:

  将目的基因导入植物细胞:

  采用最多的方法是农杆菌转化法,其次还有基因枪法和花粉管通道法等。

  将目的基因导入动物细胞:

  最常用的方法是显微注射技术。方法的受体细胞多是受精卵。

  将目的基因导入微生物细胞:

  最常用的原核细胞是 大肠杆菌 ,其转化方法是:先用 Ca2+ 处理细胞,使其成为感受态细胞 ,再将 重组表达载体DNA分子 溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程。

  目的基因的检测和表达

  1.首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交(DNA-DNA)技术。

  2.其次还要检测目的基因是否转录出mRNA,方法是采用分子杂交(DNA-RNA)技术。

  3.最后检测目的基因是否翻译成蛋白质,方法是采用抗原—抗体杂交技术。

  4.有时还需进行个体生物学水平的鉴定。如生物抗虫或抗病的鉴定等。

  1.3基因工程的应用

  1.植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质。

  2.动物基因工程:提高动物生长速度、改善畜产品品质、用转基因动物生产药物。

  3.基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用。

  4.基因诊断:又称为DNA诊断,是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。

  1.4蛋白质工程的概念

  1、基因工程在原则上只能生产自然界已存在的蛋白质

  2、概念:蛋白质工程是指以蛋白质分子的结构规律及其生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。

  A 转录 B 翻译

  3、蛋白质工程的基本途径:从预期的蛋白质功能出发→ 设计预期的蛋白质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列(基因)

  注意:目的基因只能用人工合成的方法

  4、蛋白质工程与基因工程区别

  蛋白质工程

  基因工程

  实质

  通过改造基因,以定向改造天然蛋白质,甚至创造自然界不存在的蛋白质

  将目的基因从供体转移到受体细胞,并在受体细胞中表达

  结果

  合成自然界不存在的蛋白质

  只能生产自然界已存在的蛋白质

  联系

  蛋白质工程是在基因工程的基础上,延伸出的第二代基因工程

  "胚胎工程"相关知识点

  生物技术的安全性和伦理问题

  基因编辑技术问世以来,一直面临着伦理争议,各国对其能不能应用于人类胚胎的研究均持极为谨慎的态度。我国亦如此。2003年,原科学技术部和原卫生部联合印发《人胚胎干细胞研究伦理指导原则》,其中第六条规定:进行人胚胎干细胞研究,必须遵守以下行为规范:

  (一)利用体外受精、体细胞核移植、单性复制技术或遗传修饰获得的囊胚,其体外培养期限自受精或核移植开始不得超过14天。

  (二)不得将前款中获得的已用于研究的人囊胚植入人或任何其他动物的生殖系统。

  (三)不得将人的生殖细胞与其他物种的生殖细胞结合。不少科学家认为,这一规定也适用于基因编辑技术——也就是说,如果在我国深圳开展了这项实验,那么相关人员和机构已经涉嫌违反我国的法律法规了。

  生殖细胞不同于体细胞,其改变将会遗传给后代。而我们对人类胚胎的发育了解、对人类基因组功能的了解等,都还处于非常基础、极不全面的阶段。在诸多影响皆不明确的情况下,对生殖细胞的基因编辑投入临床被认为是“不负责任的”。虽然绝大科学家都同意根据科学技术的发展对生殖细胞编辑的临床使用进行定期评估,但截至目前,似乎并没有出现能够改变这一指导原则的科学突破。