拐点是二阶导数为零的点吗
由 高老师 分享
时间:
原因
函数y=f(x)的图形的凹凸分界点称为图形的拐点。拐点只可能是两种点:二阶导数为零的点或二阶导数不存在的点。
拐点的判别定理1:若在x0处f''(x)=0(或f''(x)不存在),当x变动经过x0时,f''(x)变号,则(x0,f''(x0))为拐点。
拐点的判别定理2:若f(x)在x0点的某邻域内有三阶导数,且f''(x0)=0,f'''(x0)≠0,则(x0,f''(x0))为拐点。
原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
拐点的求法
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点X0检查f''(x)在X0左右两侧邻近的符号,那么当两侧的符号相反时,点(X0,f(X0))是拐点,当两侧的符号相同时,点(X0,f(X0))不是拐点。
上一篇:定积分的性质
下一篇:兔不可复得而身为宋国笑的意思