三角函数的导数
由 高老师 分享
时间:
推荐文章
三角函数的导数公式有
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=sec²x=1+tan²x
(cotx)'=-csc²x
(secx)'=tanx·secx
(cscx)'=-cotx·cscx.
(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec²x
基本的求导法则
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
上一篇:反三角函数与三角函数的转换
下一篇:函数定义域的求法