高三网 > 高考 > 高考备考 > 实矩阵的特征值一定是实数吗

实矩阵的特征值一定是实数吗

高老师 分享 时间:

实对称矩阵的含义

如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji),(i,j为元素的脚标),则称A为实对称矩阵。

实对称矩阵A一定可正交相似对角化。

n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。

特征值是什么意思

特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。

非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。