勾股定理的证明方法
由 高老师 分享
时间:
推荐文章
在欧氏《几何原本》中,勾股定理的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明。如图,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等,即,。
在这个定理的证明中,我们需要如下四个辅助定理:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)
三角形面积是任一同底同高之平行四边形面积的一半,如。
任意一个正方形的面积等于其两边长的乘积。
任意一个矩形的面积等于其两边长的乘积。
证明的方法如下:
设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成正方形CBDE、BAGF和ACIH。如上图,
画出过点A与BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A、K和L在同一直线上,所以四边形面积。
因为C、A和G在同一直线上,所以正方形面积。
因此=AB²。
同理可证,=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
下一篇:英语词组固定搭配